These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32046233)

  • 1. Multi-Channel Neural Recording Implants: A Review.
    Hashemi Noshahr F; Nabavi M; Sawan M
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A PVT-Robust AFE-Embedded Error-Feedback Noise-Shaping SAR ADC With Chopper-Based Passive High-Pass IIR Filtering for Direct Neural Recording.
    Jeong K; Jung Y; Yun G; Youn D; Jo Y; Lee HJ; Ha S; Je M
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):679-691. PubMed ID: 35881597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural recording front-end IC using action potential detection and analog buffer with digital delay for data compression.
    Liu L; Yao L; Zou X; Goh WL; Je M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():747-50. PubMed ID: 24109795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.
    Chang SI; Park SY; Yoon E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in neural recording microsystems.
    Gosselin B
    Sensors (Basel); 2011; 11(5):4572-97. PubMed ID: 22163863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
    Ng KA; Greenwald E; Xu YP; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):45-62. PubMed ID: 26798055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 110-nW in-channel sigma-delta converter for large-scale neural recording implants.
    Rezaei M; Maghsoudloo E; Sawan M; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5741-5744. PubMed ID: 28269558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a low-noise low-voltage amplifier for improved neural signal recording.
    Sharma K; Tripathi RK; Jatana HS; Sharma R
    Rev Sci Instrum; 2022 Jun; 93(6):064710. PubMed ID: 35777993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low-power current-reuse dual-band analog front-end for multi-channel neural signal recording.
    Sepehrian H; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5284-7. PubMed ID: 25571186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 700mV low power low noise implantable neural recording system design.
    An G; Hutchens C; Rennaker RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6557-60. PubMed ID: 25571498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-power 32-channel digitally programmable neural recording integrated circuit.
    Wattanapanitch W; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2011 Dec; 5(6):592-602. PubMed ID: 23852555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System.
    Wu CY; Cheng CH; Chen ZX
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):543-553. PubMed ID: 29877818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new architecture for neural signal amplification in implantable brain machine interfaces.
    ur Rehman S; Kamboh AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2744-7. PubMed ID: 24110295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.
    Liu X; Zhang M; Richardson AG; Lucas TH; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):729-742. PubMed ID: 28029630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Sub- μW/Ch Analog Front-End for ∆-Neural Recording With Spike-Driven Data Compression.
    Kim SJ; Han SH; Cha JH; Liu L; Yao L; Gao Y; Je M
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):1-14. PubMed ID: 30418918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Power Current-Reuse Analog Front-End for High-Density Neural Recording Implants.
    Rezaei M; Maghsoudloo E; Bories C; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):271-280. PubMed ID: 29570055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A closed-loop compressive-sensing-based neural recording system.
    Zhang J; Mitra S; Suo Y; Cheng A; Xiong T; Michon F; Welkenhuysen M; Kloosterman F; Chin PS; Hsiao S; Tran TD; Yazicioglu F; Etienne-Cummings R
    J Neural Eng; 2015 Jun; 12(3):036005. PubMed ID: 25874929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 64-channel neuron recording system.
    Lo YK; Liu W; Chen K; Tsai MH; Hsueh FL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2862-5. PubMed ID: 22254938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.