BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 32046275)

  • 1. Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair.
    Economos NG; Oyaghire S; Quijano E; Ricciardi AS; Saltzman WM; Glazer PM
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing.
    Ricciardi AS; Quijano E; Putman R; Saltzman WM; Glazer PM
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29534473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery.
    Bahal R; Ali McNeer N; Quijano E; Liu Y; Sulkowski P; Turchick A; Lu YC; Bhunia DC; Manna A; Greiner DL; Brehm MA; Cheng CJ; López-Giráldez F; Ricciardi A; Beloor J; Krause DS; Kumar P; Gallagher PG; Braddock DT; Mark Saltzman W; Ly DH; Glazer PM
    Nat Commun; 2016 Oct; 7():13304. PubMed ID: 27782131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors.
    McNeer NA; Chin JY; Schleifman EB; Fields RJ; Glazer PM; Saltzman WM
    Mol Ther; 2011 Jan; 19(1):172-80. PubMed ID: 20859257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo.
    McNeer NA; Schleifman EB; Cuthbert A; Brehm M; Jackson A; Cheng C; Anandalingam K; Kumar P; Shultz LD; Greiner DL; Mark Saltzman W; Glazer PM
    Gene Ther; 2013 Jun; 20(6):658-69. PubMed ID: 23076379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Gene-Editing Technique Cures β-Thalassemia in Utero: A novel peptide nucleic acid-based gene-editing technique using a nanoparticle delivery system seemingly cured beta thalassemia in fetal mice.
    Am J Med Genet A; 2018 Oct; 176(10):2052-2053. PubMed ID: 30380190
    [No Abstract]   [Full Text] [Related]  

  • 7. In utero nanoparticle delivery for site-specific genome editing.
    Ricciardi AS; Bahal R; Farrelly JS; Quijano E; Bianchi AH; Luks VL; Putman R; López-Giráldez F; Coşkun S; Song E; Liu Y; Hsieh WC; Ly DH; Stitelman DH; Glazer PM; Saltzman WM
    Nat Commun; 2018 Jun; 9(1):2481. PubMed ID: 29946143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of PNA-laden nanoparticles for hematological disorders.
    Malik S; Oyaghire S; Bahal R
    Cell Mol Life Sci; 2019 Mar; 76(6):1057-1065. PubMed ID: 30498995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.
    Bahal R; Quijano E; McNeer NA; Liu Y; Bhunia DC; Lopez-Giraldez F; Fields RJ; Saltzman WM; Ly DH; Glazer PM
    Curr Gene Ther; 2014; 14(5):331-42. PubMed ID: 25174576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer delivery systems for site-specific genome editing.
    McNeer NA; Schleifman EB; Glazer PM; Saltzman WM
    J Control Release; 2011 Oct; 155(2):312-6. PubMed ID: 21620910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-selective targeting of duplex DNA by peptide nucleic acids.
    Nielsen PE
    Curr Opin Mol Ther; 2010 Apr; 12(2):184-91. PubMed ID: 20373262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities.
    Quijano E; Bahal R; Ricciardi A; Saltzman WM; Glazer PM
    Yale J Biol Med; 2017 Dec; 90(4):583-598. PubMed ID: 29259523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ELISA-based platform for rapid identification of structure-dependent nucleic acid-protein interactions detects novel DNA triplex interactors.
    Economos NG; Thapar U; Balasubramanian N; Karras GI; Glazer PM
    J Biol Chem; 2022 Oct; 298(10):102398. PubMed ID: 35988651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide nucleic acid-dependent artifact can lead to false-positive triplex gene editing signals.
    Ho PY; Zhang Z; Hayes ME; Curd A; Dib C; Rayburn M; Tam SN; Srivastava T; Hriniak B; Li XJ; Leonard S; Wang L; Tarighat S; Sim DS; Fiandaca M; Coull JM; Ebens A; Fordyce M; Czechowicz A
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34732575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(Lactic-co-Glycolic Acid) Nanoparticle Delivery of Peptide Nucleic Acids In Vivo.
    Oyaghire SN; Quijano E; Piotrowski-Daspit AS; Saltzman WM; Glazer PM
    Methods Mol Biol; 2020; 2105():261-281. PubMed ID: 32088877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium.
    McNeer NA; Anandalingam K; Fields RJ; Caputo C; Kopic S; Gupta A; Quijano E; Polikoff L; Kong Y; Bahal R; Geibel JP; Glazer PM; Saltzman WM; Egan ME
    Nat Commun; 2015 Apr; 6():6952. PubMed ID: 25914116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Nanoparticle-based Delivery of Next Generation Peptide Nucleic Acids.
    Malik S; Asmara B; Moscato Z; Mukker JK; Bahal R
    Curr Pharm Des; 2018; 24(43):5164-5174. PubMed ID: 30657037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplex-mediated genome targeting and editing.
    Reza F; Glazer PM
    Methods Mol Biol; 2014; 1114():115-42. PubMed ID: 24557900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed gene modification via triple helix formation.
    Gorman L; Glazer PM
    Curr Mol Med; 2001 Jul; 1(3):391-9. PubMed ID: 11899085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide nucleic acid (PNA) binding-mediated gene regulation.
    Wang G; Xu XS
    Cell Res; 2004 Apr; 14(2):111-6. PubMed ID: 15115611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.