These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32046485)

  • 1. Reagentless Redox Capacitive Assaying of C-Reactive Protein at a Polyaniline Interface.
    Baradoke A; Hein R; Li X; Davis JJ
    Anal Chem; 2020 Mar; 92(5):3508-3511. PubMed ID: 32046485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Capacitive Assaying of C-Reactive Protein at a Peptide Supported Aptamer Interface.
    Piccoli J; Hein R; El-Sagheer AH; Brown T; Cilli EM; Bueno PR; Davis JJ
    Anal Chem; 2018 Mar; 90(5):3005-3008. PubMed ID: 29411973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label free redox capacitive biosensing.
    Fernandes FC; Góes MS; Davis JJ; Bueno PR
    Biosens Bioelectron; 2013 Dec; 50():437-40. PubMed ID: 23896524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Biomarker Quantification through Reagentless Capacitive Kinetics.
    Kang S; Sharafeldin M; Patrick SC; Chen X; Davis JJ
    Anal Chem; 2023 Mar; 95(10):4721-4727. PubMed ID: 36856747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free capacitive diagnostics: exploiting local redox probe state occupancy.
    Lehr J; Hobnouse GC; Fernandes FC; Bueno PR; Davis JJ
    Anal Chem; 2014 Mar; 86(5):2559-64. PubMed ID: 24491045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing label free electrochemical impedimetric and capacitive biosensing architectures.
    Fernandes FC; Santos A; Martins DC; Góes MS; Bueno PR
    Biosens Bioelectron; 2014 Jul; 57():96-102. PubMed ID: 24561523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems.
    Raitman OA; Katz E; Bückmann AF; Willner I
    J Am Chem Soc; 2002 Jun; 124(22):6487-96. PubMed ID: 12033880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein.
    Goda T; Toya M; Matsumoto A; Miyahara Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27440-8. PubMed ID: 26588324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugated self-doped polyaniline-DNA hybrid as trigger for highly sensitive reagentless and electrochemical self-signal amplifying DNA hybridization sensing.
    Hu Y; Yang T; Li Q; Guan Q; Jiao K
    Analyst; 2013 Feb; 138(4):1067-74. PubMed ID: 23304697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-tagged peptide for capacitive diagnostic assays.
    Santos A; Piccoli JP; Santos-Filho NA; Cilli EM; Bueno PR
    Biosens Bioelectron; 2015 Jun; 68():281-287. PubMed ID: 25590969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free capacitive assaying of biomarkers for molecular diagnostics.
    Garrote BL; Santos A; Bueno PR
    Nat Protoc; 2020 Dec; 15(12):3879-3893. PubMed ID: 33106679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization.
    Zhang W; Yang T; Li X; Wang D; Jiao K
    Biosens Bioelectron; 2009 Oct; 25(2):428-34. PubMed ID: 19713094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide.
    Yang M; Kim DS; Yoon JH; Hong SB; Jeong SW; Yoo DE; Lee TJ; Lee SJ; Lee KG; Choi BG
    Analyst; 2016 Feb; 141(4):1319-24. PubMed ID: 26765056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a redox-active surface for ultrasensitive redox capacitive aptasensing of aflatoxin M1 in milk.
    Ben Aissa S; Mars A; Catanante G; Marty JL; Raouafi N
    Talanta; 2019 Apr; 195():525-532. PubMed ID: 30625578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive capacitive immunosensor based on porous silicon-polyaniline structure: Bias dependence on specificity.
    Betty CA
    Biosens Bioelectron; 2009 Oct; 25(2):338-43. PubMed ID: 19674886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein.
    Hui N; Sun X; Song Z; Niu S; Luo X
    Biosens Bioelectron; 2016 Dec; 86():143-149. PubMed ID: 27348779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element.
    Lakshmi D; Bossi A; Whitcombe MJ; Chianella I; Fowler SA; Subrahmanyam S; Piletska EV; Piletsky SA
    Anal Chem; 2009 May; 81(9):3576-84. PubMed ID: 19354259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor.
    Wanna Y; Srisukhumbowornchai N; Tuantranont A; Wisitsoraat A; Thavarungkul N; Singjai P
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3893-6. PubMed ID: 17256348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor.
    Wang X; Wu D; Song X; Du W; Zhao X; Zhang D
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31216668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.