These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. Raitman OA; Katz E; Bückmann AF; Willner I J Am Chem Soc; 2002 Jun; 124(22):6487-96. PubMed ID: 12033880 [TBL] [Abstract][Full Text] [Related]
8. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. Goda T; Toya M; Matsumoto A; Miyahara Y ACS Appl Mater Interfaces; 2015 Dec; 7(49):27440-8. PubMed ID: 26588324 [TBL] [Abstract][Full Text] [Related]
9. Conjugated self-doped polyaniline-DNA hybrid as trigger for highly sensitive reagentless and electrochemical self-signal amplifying DNA hybridization sensing. Hu Y; Yang T; Li Q; Guan Q; Jiao K Analyst; 2013 Feb; 138(4):1067-74. PubMed ID: 23304697 [TBL] [Abstract][Full Text] [Related]
13. Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization. Zhang W; Yang T; Li X; Wang D; Jiao K Biosens Bioelectron; 2009 Oct; 25(2):428-34. PubMed ID: 19713094 [TBL] [Abstract][Full Text] [Related]
14. Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide. Yang M; Kim DS; Yoon JH; Hong SB; Jeong SW; Yoo DE; Lee TJ; Lee SJ; Lee KG; Choi BG Analyst; 2016 Feb; 141(4):1319-24. PubMed ID: 26765056 [TBL] [Abstract][Full Text] [Related]
15. Design of a redox-active surface for ultrasensitive redox capacitive aptasensing of aflatoxin M1 in milk. Ben Aissa S; Mars A; Catanante G; Marty JL; Raouafi N Talanta; 2019 Apr; 195():525-532. PubMed ID: 30625578 [TBL] [Abstract][Full Text] [Related]
16. Highly sensitive capacitive immunosensor based on porous silicon-polyaniline structure: Bias dependence on specificity. Betty CA Biosens Bioelectron; 2009 Oct; 25(2):338-43. PubMed ID: 19674886 [TBL] [Abstract][Full Text] [Related]
17. Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein. Hui N; Sun X; Song Z; Niu S; Luo X Biosens Bioelectron; 2016 Dec; 86():143-149. PubMed ID: 27348779 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Lakshmi D; Bossi A; Whitcombe MJ; Chianella I; Fowler SA; Subrahmanyam S; Piletska EV; Piletsky SA Anal Chem; 2009 May; 81(9):3576-84. PubMed ID: 19354259 [TBL] [Abstract][Full Text] [Related]
19. The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor. Wanna Y; Srisukhumbowornchai N; Tuantranont A; Wisitsoraat A; Thavarungkul N; Singjai P J Nanosci Nanotechnol; 2006 Dec; 6(12):3893-6. PubMed ID: 17256348 [TBL] [Abstract][Full Text] [Related]
20. Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor. Wang X; Wu D; Song X; Du W; Zhao X; Zhang D Molecules; 2019 Jun; 24(12):. PubMed ID: 31216668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]