These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 32046599)

  • 21. Endocrine cell and nerve regeneration in autologous in situ tissue-engineered small intestine.
    Nakase Y; Nakamura T; Kin S; Nakashima S; Yoshikawa T; Kuriu Y; Miyagawa K; Sakakura C; Otsuji E; Ikada Y; Yamagishi H; Hagiwara A
    J Surg Res; 2007 Jan; 137(1):61-8. PubMed ID: 17084409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of l-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering.
    Dosh RH; Jordan-Mahy N; Sammon C; Le Maitre CL
    Biomater Sci; 2019 Sep; 7(10):4310-4324. PubMed ID: 31410428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stem cells and biopharmaceuticals: vital roles in the growth of tissue-engineered small intestine.
    Belchior GG; Sogayar MC; Grikscheit TC
    Semin Pediatr Surg; 2014 Jun; 23(3):141-9. PubMed ID: 24994528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enriched Intestinal Stem Cell Seeding Improves the Architecture of Tissue-Engineered Intestine.
    Liu Y; Rager T; Johnson J; Enmark J; Besner GE
    Tissue Eng Part C Methods; 2015 Aug; 21(8):816-24. PubMed ID: 25603285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterisation of mouse intestinal mesoangioblasts.
    Perin S; McCann CJ; De Coppi P; Thapar N
    Pediatr Surg Int; 2019 Jan; 35(1):29-34. PubMed ID: 30406837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Luminal Chemosensory Cells in the Small Intestine.
    Burman A; Kaji I
    Nutrients; 2021 Oct; 13(11):. PubMed ID: 34835968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro.
    Rahmani S; Breyner NM; Su HM; Verdu EF; Didar TF
    Biomaterials; 2019 Feb; 194():195-214. PubMed ID: 30612006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colorectal tissue engineering: A comparative study between porcine small intestinal submucosa (SIS) and chitosan hydrogel patches.
    Denost Q; Adam JP; Pontallier A; Montembault A; Bareille R; Siadous R; Delmond S; Rullier E; David L; Bordenave L
    Surgery; 2015 Dec; 158(6):1714-23. PubMed ID: 26275832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue engineering of small intestine--current status.
    Gupta A; Dixit A; Sales KM; Winslet MC; Seifalian AM
    Biomacromolecules; 2006 Oct; 7(10):2701-9. PubMed ID: 17025341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue engineering of esophagus and small intestine in rodent injury models.
    Basu J; Mihalko KL; Rivera EA; Guthrie KI; Genheimer CW; Sangha N; Ludlow JW
    Methods Mol Biol; 2013; 1001():311-24. PubMed ID: 23494440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Vivo Model of Small Intestine.
    Mahe MM; Brown NE; Poling HM; Helmrath MA
    Methods Mol Biol; 2017; 1597():229-245. PubMed ID: 28361322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells.
    Nakase Y; Hagiwara A; Nakamura T; Kin S; Nakashima S; Yoshikawa T; Fukuda K; Kuriu Y; Miyagawa K; Sakakura C; Otsuji E; Shimizu Y; Ikada Y; Yamagishi H
    Tissue Eng; 2006 Feb; 12(2):403-12. PubMed ID: 16548698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties.
    Syed O; Kim JH; Keskin-Erdogan Z; Day RM; El-Fiqi A; Kim HW; Knowles JC
    Acta Biomater; 2019 Nov; 99():181-195. PubMed ID: 31446049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-term and long-term human or mouse organoid units generate tissue-engineered small intestine without added signalling molecules.
    Hou X; Chang DF; Trecartin A; Barthel ER; Schlieve CR; Frey MR; Fowler KL; Grikscheit TC
    Exp Physiol; 2018 Dec; 103(12):1633-1644. PubMed ID: 30232817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering.
    Wu S; Liu Y; Bharadwaj S; Atala A; Zhang Y
    Biomaterials; 2011 Feb; 32(5):1317-26. PubMed ID: 21055807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids.
    Kasendra M; Tovaglieri A; Sontheimer-Phelps A; Jalili-Firoozinezhad S; Bein A; Chalkiadaki A; Scholl W; Zhang C; Rickner H; Richmond CA; Li H; Breault DT; Ingber DE
    Sci Rep; 2018 Feb; 8(1):2871. PubMed ID: 29440725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A bioengineering perspective on modelling the intestinal epithelial physiology in vitro.
    Antfolk M; Jensen KB
    Nat Commun; 2020 Dec; 11(1):6244. PubMed ID: 33288759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and Characterization of an Acellular Porcine Small Intestine Submucosa Scaffold for Use in Corneal Epithelium Tissue Engineering.
    Wang F; Song Q; Du L; Wu X
    Curr Eye Res; 2020 Feb; 45(2):134-143. PubMed ID: 31514545
    [No Abstract]   [Full Text] [Related]  

  • 39. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The translational roadmap of the gut models, focusing on gut-on-chip.
    Malaguarnera G; Graute M; Homs Corbera A
    Open Res Eur; 2021; 1():62. PubMed ID: 37645178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.