These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 32046989)
1. Natural language processing for structuring clinical text data on depression using UK-CRIS. Vaci N; Liu Q; Kormilitzin A; De Crescenzo F; Kurtulmus A; Harvey J; O'Dell B; Innocent S; Tomlinson A; Cipriani A; Nevado-Holgado A Evid Based Ment Health; 2020 Feb; 23(1):21-26. PubMed ID: 32046989 [TBL] [Abstract][Full Text] [Related]
2. Text mining occupations from the mental health electronic health record: a natural language processing approach using records from the Clinical Record Interactive Search (CRIS) platform in south London, UK. Chilman N; Song X; Roberts A; Tolani E; Stewart R; Chui Z; Birnie K; Harber-Aschan L; Gazard B; Chandran D; Sanyal J; Hatch S; Kolliakou A; Das-Munshi J BMJ Open; 2021 Mar; 11(3):e042274. PubMed ID: 33766838 [TBL] [Abstract][Full Text] [Related]
3. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records. Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734 [TBL] [Abstract][Full Text] [Related]
4. Can natural language processing models extract and classify instances of interpersonal violence in mental healthcare electronic records: an applied evaluative study. Botelle R; Bhavsar V; Kadra-Scalzo G; Mascio A; Williams MV; Roberts A; Velupillai S; Stewart R BMJ Open; 2022 Feb; 12(2):e052911. PubMed ID: 35172999 [TBL] [Abstract][Full Text] [Related]
5. Natural language processing to extract symptoms of severe mental illness from clinical text: the Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project. Jackson RG; Patel R; Jayatilleke N; Kolliakou A; Ball M; Gorrell G; Roberts A; Dobson RJ; Stewart R BMJ Open; 2017 Jan; 7(1):e012012. PubMed ID: 28096249 [TBL] [Abstract][Full Text] [Related]
6. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing. Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101 [TBL] [Abstract][Full Text] [Related]
7. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
8. Information extraction from free text for aiding transdiagnostic psychiatry: constructing NLP pipelines tailored to clinicians' needs. Turner RJ; Coenen F; Roelofs F; Hagoort K; Härmä A; Grünwald PD; Velders FP; Scheepers FE BMC Psychiatry; 2022 Jun; 22(1):407. PubMed ID: 35715745 [TBL] [Abstract][Full Text] [Related]
9. A systematic review of natural language processing and text mining of symptoms from electronic patient-authored text data. Dreisbach C; Koleck TA; Bourne PE; Bakken S Int J Med Inform; 2019 May; 125():37-46. PubMed ID: 30914179 [TBL] [Abstract][Full Text] [Related]
10. Extracting lung cancer staging descriptors from pathology reports: A generative language model approach. Cho H; Yoo S; Kim B; Jang S; Sunwoo L; Kim S; Lee D; Kim S; Nam S; Chung JH J Biomed Inform; 2024 Sep; 157():104720. PubMed ID: 39233209 [TBL] [Abstract][Full Text] [Related]
11. Associations of remote mental healthcare with clinical outcomes: a natural language processing enriched electronic health record data study protocol. Ahmed MS; Kornblum D; Oliver D; Fusar-Poli P; Patel R BMJ Open; 2023 Feb; 13(2):e067254. PubMed ID: 36764723 [TBL] [Abstract][Full Text] [Related]
12. [A customized method for information extraction from unstructured text data in the electronic medical records]. Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524 [TBL] [Abstract][Full Text] [Related]
13. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
14. Med7: A transferable clinical natural language processing model for electronic health records. Kormilitzin A; Vaci N; Liu Q; Nevado-Holgado A Artif Intell Med; 2021 Aug; 118():102086. PubMed ID: 34412834 [TBL] [Abstract][Full Text] [Related]
15. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data. Sezgin E; Hussain SA; Rust S; Huang Y JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467 [TBL] [Abstract][Full Text] [Related]
16. Facilitating clinical research through automation: Combining optical character recognition with natural language processing. Hom J; Nikowitz J; Ottesen R; Niland JC Clin Trials; 2022 Oct; 19(5):504-511. PubMed ID: 35608136 [TBL] [Abstract][Full Text] [Related]
17. Use of Natural Language Processing to Extract Clinical Cancer Phenotypes from Electronic Medical Records. Savova GK; Danciu I; Alamudun F; Miller T; Lin C; Bitterman DS; Tourassi G; Warner JL Cancer Res; 2019 Nov; 79(21):5463-5470. PubMed ID: 31395609 [TBL] [Abstract][Full Text] [Related]
18. Using natural language processing to extract structured epilepsy data from unstructured clinic letters: development and validation of the ExECT (extraction of epilepsy clinical text) system. Fonferko-Shadrach B; Lacey AS; Roberts A; Akbari A; Thompson S; Ford DV; Lyons RA; Rees MI; Pickrell WO BMJ Open; 2019 Apr; 9(4):e023232. PubMed ID: 30940752 [TBL] [Abstract][Full Text] [Related]
19. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning-based detection of psychiatric attributes from German mental health records. Madan S; Julius Zimmer F; Balabin H; Schaaf S; Fröhlich H; Fluck J; Neuner I; Mathiak K; Hofmann-Apitius M; Sarkheil P Int J Med Inform; 2022 May; 161():104724. PubMed ID: 35279550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]