BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32046989)

  • 21. Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text.
    Heintzelman NH; Taylor RJ; Simonsen L; Lustig R; Anderko D; Haythornthwaite JA; Childs LC; Bova GS
    J Am Med Inform Assoc; 2013; 20(5):898-905. PubMed ID: 23144336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
    Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA
    Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RegEMR: a natural language processing system to automatically identify premature ovarian decline from Chinese electronic medical records.
    Cai J; Chen S; Guo S; Wang S; Li L; Liu X; Zheng K; Liu Y; Chen S
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):126. PubMed ID: 37464410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal information extraction from mental health records to identify duration of untreated psychosis.
    Viani N; Kam J; Yin L; Bittar A; Dutta R; Patel R; Stewart R; Velupillai S
    J Biomed Semantics; 2020 Mar; 11(1):2. PubMed ID: 32156302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De-identification of clinical free text using natural language processing: A systematic review of current approaches.
    Kovačević A; Bašaragin B; Milošević N; Nenadić G
    Artif Intell Med; 2024 May; 151():102845. PubMed ID: 38555848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maximizing the use of social and behavioural information from secondary care mental health electronic health records.
    Goodday SM; Kormilitzin A; Vaci N; Liu Q; Cipriani A; Smith T; Nevado-Holgado A
    J Biomed Inform; 2020 Jul; 107():103429. PubMed ID: 32387393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automating Clinical Chart Review: An Open-Source Natural Language Processing Pipeline Developed on Free-Text Radiology Reports From Patients With Glioblastoma.
    Senders JT; Cho LD; Calvachi P; McNulty JJ; Ashby JL; Schulte IS; Almekkawi AK; Mehrtash A; Gormley WB; Smith TR; Broekman MLD; Arnaout O
    JCO Clin Cancer Inform; 2020 Jan; 4():25-34. PubMed ID: 31977252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated medical chart review for breast cancer outcomes research: a novel natural language processing extraction system.
    Chen Y; Hao L; Zou VZ; Hollander Z; Ng RT; Isaac KV
    BMC Med Res Methodol; 2022 May; 22(1):136. PubMed ID: 35549854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating online activity in UK adolescent mental health patients: a feasibility study using a natural language processing approach for electronic health records.
    Sedgwick R; Bittar A; Kalsi H; Barack T; Downs J; Dutta R
    BMJ Open; 2023 May; 13(5):e061640. PubMed ID: 37230520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of temporal relations from clinical free text: A systematic review of current approaches.
    Alfattni G; Peek N; Nenadic G
    J Biomed Inform; 2020 Aug; 108():103488. PubMed ID: 32673788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detecting the presence of an indwelling urinary catheter and urinary symptoms in hospitalized patients using natural language processing.
    Gundlapalli AV; Divita G; Redd A; Carter ME; Ko D; Rubin M; Samore M; Strymish J; Krein S; Gupta K; Sales A; Trautner BW
    J Biomed Inform; 2017 Jul; 71S():S39-S45. PubMed ID: 27404849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review.
    Hossain E; Rana R; Higgins N; Soar J; Barua PD; Pisani AR; Turner K
    Comput Biol Med; 2023 Mar; 155():106649. PubMed ID: 36805219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using de-identified electronic health records to research mental health supported housing services: A feasibility study.
    Dalton-Locke C; Thygesen JH; Werbeloff N; Osborn D; Killaspy H
    PLoS One; 2020; 15(8):e0237664. PubMed ID: 32817624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data for registry and quality review can be retrospectively collected using natural language processing from unstructured charts of arthroplasty patients.
    Shah RF; Bini S; Vail T
    Bone Joint J; 2020 Jul; 102-B(7_Supple_B):99-104. PubMed ID: 32600201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracting data from electronic medical records: validation of a natural language processing program to assess prostate biopsy results.
    Thomas AA; Zheng C; Jung H; Chang A; Kim B; Gelfond J; Slezak J; Porter K; Jacobsen SJ; Chien GW
    World J Urol; 2014 Feb; 32(1):99-103. PubMed ID: 23417341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of UK Biobank data for mental health outcomes: A pilot study using secondary care electronic health records.
    Li Z; Kormilitzin A; Fernandes M; Vaci N; Liu Q; Newby D; Goodday S; Smith T; Nevado-Holgado AJ; Winchester L
    Int J Med Inform; 2022 Apr; 160():104704. PubMed ID: 35168089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning for Natural Language Processing in Urology: State-of-the-Art Automated Extraction of Detailed Pathologic Prostate Cancer Data From Narratively Written Electronic Health Records.
    Leyh-Bannurah SR; Tian Z; Karakiewicz PI; Wolffgang U; Sauter G; Fisch M; Pehrke D; Huland H; Graefen M; Budäus L
    JCO Clin Cancer Inform; 2018 Dec; 2():1-9. PubMed ID: 30652616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applying a natural language processing tool to electronic health records to assess performance on colonoscopy quality measures.
    Mehrotra A; Dellon ES; Schoen RE; Saul M; Bishehsari F; Farmer C; Harkema H
    Gastrointest Endosc; 2012 Jun; 75(6):1233-9.e14. PubMed ID: 22482913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.