BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32047029)

  • 1. Basic principles of neonatal bubble CPAP: effects on CPAP delivery and imposed work of breathing when altering the original design.
    Baldursdottir S; Falk M; Donaldsson S; Jonsson B; Drevhammar T
    Arch Dis Child Fetal Neonatal Ed; 2020 Sep; 105(5):550-554. PubMed ID: 32047029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of imposed resistance on tidal volume with 5 neonatal nasal continuous positive airway pressure systems.
    Cook SE; Fedor KL; Chatburn RL
    Respir Care; 2010 May; 55(5):544-8. PubMed ID: 20420723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of condensate in the exhalation limb of neonatal circuits on airway pressure during bubble CPAP.
    Youngquist TM; Richardson CP; Diblasi RM
    Respir Care; 2013 Nov; 58(11):1840-6. PubMed ID: 23481441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the RAM Cannula with Early Bubble Continuous Positive Airway Pressure Requires Higher Pressures: Clinical and In vitro Evaluations.
    Claassen CC; Strand ML; Williams HL; Hillman NH
    Am J Perinatol; 2021 Sep; 38(11):1167-1173. PubMed ID: 32446255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infant CPAP for low-income countries: An experimental comparison of standard bubble CPAP and the Pumani system.
    Falk M; Donaldsson S; Drevhammar T
    PLoS One; 2018; 13(5):e0196683. PubMed ID: 29768512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble CPAP devices for infants and children in resource-limited settings: review of the literature.
    Won A; Suarez-Rebling D; Baker AL; Burke TF; Nelson BD
    Paediatr Int Child Health; 2019 Aug; 39(3):168-176. PubMed ID: 30375281
    [No Abstract]   [Full Text] [Related]  

  • 7. A new low-cost commercial bubble CPAP (bCPAP) machine compared with a traditional bCPAP device in Nigeria.
    Amadi HO; Okonkwo IR; Abioye IO; Abubakar AL; Olateju EK; Adesina CT; Umar S; Eziechila BC
    Paediatr Int Child Health; 2019 Aug; 39(3):184-192. PubMed ID: 30957682
    [No Abstract]   [Full Text] [Related]  

  • 8. Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.
    Poli JA; Richardson CP; DiBlasi RM
    Respir Care; 2015 Mar; 60(3):371-81. PubMed ID: 25425706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COVID-19: minimising contaminated aerosol spreading during CPAP treatment.
    Donaldsson S; Naver L; Jonsson B; Drevhammar T
    Arch Dis Child Fetal Neonatal Ed; 2020 Nov; 105(6):669-671. PubMed ID: 32669360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a modified bubble continuous positive airway pressure (bCPAP) device for children in respiratory distress in low- and middle-income countries: a safety study.
    Bjorklund AR; Odongkara Mpora B; Steiner ME; Fischer G; Davey CS; Slusher TM
    Paediatr Int Child Health; 2019 Aug; 39(3):160-167. PubMed ID: 29912645
    [No Abstract]   [Full Text] [Related]  

  • 11. Bubble and ventilator-derived nasal continuous positive airway pressure in premature infants: work of breathing and gas exchange.
    Courtney SE; Kahn DJ; Singh R; Habib RH
    J Perinatol; 2011 Jan; 31(1):44-50. PubMed ID: 20393478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Effect of Flow and Interface Type on Pressures Delivered With Bubble CPAP in a Simulated Model.
    Bailes SA; Firestone KS; Dunn DK; McNinch NL; Brown MF; Volsko TA
    Respir Care; 2016 Mar; 61(3):333-9. PubMed ID: 26534997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble CPAP: not all bubbling is good bubbling.
    Mastropietro CW
    Respir Care; 2013 Nov; 58(11):1990-1. PubMed ID: 24155358
    [No Abstract]   [Full Text] [Related]  

  • 14. Bubble CPAP splitting: innovative strategy in resource-limited settings.
    Verma A; Jaiswal R; Naranje KM; Gupta G; Singh A
    Arch Dis Child; 2021 Feb; 106(2):137-140. PubMed ID: 33199299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of seven infant continuous positive airway pressure systems using simulated neonatal breathing.
    Drevhammar T; Nilsson K; Zetterström H; Jonsson B
    Pediatr Crit Care Med; 2012 Mar; 13(2):e113-9. PubMed ID: 21946854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tidal breathing in preterm infants receiving and weaning from continuous positive airway pressure.
    Pickerd N; Williams EM; Watkins WJ; Kotecha S
    J Pediatr; 2014 May; 164(5):1058-1063.e1. PubMed ID: 24518163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro comparison of performance including imposed work of breathing of CPAP systems used in low-resource settings.
    Heenan M; Rojas JD; Oden ZM; Richards-Kortum R
    PLoS One; 2020; 15(12):e0242590. PubMed ID: 33270660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.
    Donaldsson S; Falk M; Jonsson B; Drevhammar T
    PLoS One; 2015; 10(7):e0133432. PubMed ID: 26192188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing positive pressure delivered from commercial and WHO-style pediatric bubble CPAP devices.
    Ettinger NA; Serazin N; Nguyen R; Werdenberg J; Huibers M; Torrey S
    BMC Pediatr; 2021 Nov; 21(1):524. PubMed ID: 34836539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of flow rate on delivery of bubble continuous positive airway pressure in an in vitro model.
    Ho TY; Ou SF; Huang SH; Lee CN; Ger LP; Hsieh KS; Cheng HY; Lee WY; Weng KP
    Pediatr Neonatol; 2010 Aug; 51(4):214-218. PubMed ID: 20713285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.