BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

736 related articles for article (PubMed ID: 32047258)

  • 1. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein.
    Xia S; Zhu Y; Liu M; Lan Q; Xu W; Wu Y; Ying T; Liu S; Shi Z; Jiang S; Lu L
    Cell Mol Immunol; 2020 Jul; 17(7):765-767. PubMed ID: 32047258
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition of Coronavirus Entry
    Outlaw VK; Bovier FT; Mears MC; Cajimat MN; Zhu Y; Lin MJ; Addetia A; Lieberman NAP; Peddu V; Xie X; Shi PY; Greninger AL; Gellman SH; Bente DA; Moscona A; Porotto M
    mBio; 2020 Oct; 11(5):. PubMed ID: 33082259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity.
    Zhu Y; Yu D; Yan H; Chong H; He Y
    J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19.
    Huang Y; Yang C; Xu XF; Xu W; Liu SW
    Acta Pharmacol Sin; 2020 Sep; 41(9):1141-1149. PubMed ID: 32747721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion.
    Xia S; Liu M; Wang C; Xu W; Lan Q; Feng S; Qi F; Bao L; Du L; Liu S; Qin C; Sun F; Shi Z; Zhu Y; Jiang S; Lu L
    Cell Res; 2020 Apr; 30(4):343-355. PubMed ID: 32231345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors.
    Romeo A; Iacovelli F; Falconi M
    Virus Res; 2020 Sep; 286():198068. PubMed ID: 32565126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein.
    Fan X; Cao D; Kong L; Zhang X
    Nat Commun; 2020 Jul; 11(1):3618. PubMed ID: 32681106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus.
    Robson B
    Comput Biol Med; 2020 Apr; 119():103670. PubMed ID: 32209231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2.
    Ling R; Dai Y; Huang B; Huang W; Yu J; Lu X; Jiang Y
    Peptides; 2020 Aug; 130():170328. PubMed ID: 32380200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms.
    Ali A; Vijayan R
    Sci Rep; 2020 Aug; 10(1):14214. PubMed ID: 32848162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A potential inhibitory role for integrin in the receptor targeting of SARS-CoV-2.
    Luan J; Lu Y; Gao S; Zhang L
    J Infect; 2020 Aug; 81(2):318-356. PubMed ID: 32283163
    [No Abstract]   [Full Text] [Related]  

  • 12. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike.
    Xia S; Yan L; Xu W; Agrawal AS; Algaissi A; Tseng CK; Wang Q; Du L; Tan W; Wilson IA; Jiang S; Yang B; Lu L
    Sci Adv; 2019 Apr; 5(4):eaav4580. PubMed ID: 30989115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salvianolic acid C potently inhibits SARS-CoV-2 infection by blocking the formation of six-helix bundle core of spike protein.
    Yang C; Pan X; Xu X; Cheng C; Huang Y; Li L; Jiang S; Xu W; Xiao G; Liu S
    Signal Transduct Target Ther; 2020 Oct; 5(1):220. PubMed ID: 33024075
    [No Abstract]   [Full Text] [Related]  

  • 15. N-acetylcysteine as a potential treatment for COVID-19.
    Jorge-Aarón RM; Rosa-Ester MP
    Future Microbiol; 2020 Jul; 15():959-962. PubMed ID: 32662664
    [No Abstract]   [Full Text] [Related]  

  • 16. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein.
    Vankadari N
    Int J Antimicrob Agents; 2020 Aug; 56(2):105998. PubMed ID: 32360231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
    Hoffmann M; Kleine-Weber H; Schroeder S; Krüger N; Herrler T; Erichsen S; Schiergens TS; Herrler G; Wu NH; Nitsche A; Müller MA; Drosten C; Pöhlmann S
    Cell; 2020 Apr; 181(2):271-280.e8. PubMed ID: 32142651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant protein targeting and opsonizing spike glycoprotein for enhancing SARS-CoV-2 phagocytosis.
    Khattabi L
    Med Hypotheses; 2020 Oct; 143():110108. PubMed ID: 32721804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine.
    Tai W; He L; Zhang X; Pu J; Voronin D; Jiang S; Zhou Y; Du L
    Cell Mol Immunol; 2020 Jun; 17(6):613-620. PubMed ID: 32203189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein.
    Behloul N; Baha S; Shi R; Meng J
    Virus Res; 2020 Sep; 286():198058. PubMed ID: 32531235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.