BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32047432)

  • 1. A Novel Approach for Drug-Target Interactions Prediction Based on Multimodal Deep Autoencoder.
    Wang H; Wang J; Dong C; Lian Y; Liu D; Yan Z
    Front Pharmacol; 2019; 10():1592. PubMed ID: 32047432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computational-Based Method for Predicting Drug-Target Interactions by Using Stacked Autoencoder Deep Neural Network.
    Wang L; You ZH; Chen X; Xia SX; Liu F; Yan X; Zhou Y; Song KJ
    J Comput Biol; 2018 Mar; 25(3):361-373. PubMed ID: 28891684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network.
    Liu Z; Chen Q; Lan W; Pan H; Hao X; Pan S
    Front Genet; 2021; 12():650821. PubMed ID: 33912218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features.
    Chu Y; Kaushik AC; Wang X; Wang W; Zhang Y; Shan X; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Jan; 22(1):451-462. PubMed ID: 31885041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the Drug-Drug Interaction Types with the Unified Embedding Features from Drug Similarity Networks.
    Yan XY; Yin PW; Wu XM; Han JX
    Front Pharmacol; 2021; 12():794205. PubMed ID: 34987405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions.
    Sun C; Xuan P; Zhang T; Ye Y
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):455-464. PubMed ID: 32750854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SMGCN: Multiple Similarity and Multiple Kernel Fusion Based Graph Convolutional Neural Network for Drug-Target Interactions Prediction.
    Wang W; Yu M; Sun B; Li J; Liu D; Zhang H; Wang X; Zhou Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):143-154. PubMed ID: 38051618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EFMSDTI: Drug-target interaction prediction based on an efficient fusion of multi-source data.
    Zhang Y; Wu M; Wang S; Chen W
    Front Pharmacol; 2022; 13():1009996. PubMed ID: 36210804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network.
    Xu X; Xuan P; Zhang T; Chen B; Sheng N
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2294-2304. PubMed ID: 33729947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PPDTS: Predicting potential drug-target interactions based on network similarity.
    Wang W; Wang Y; Zhang Y; Liu D; Zhang H; Wang X
    IET Syst Biol; 2022 Feb; 16(1):18-27. PubMed ID: 34783172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network.
    Peng J; Li J; Shang X
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):394. PubMed ID: 32938374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches.
    Olayan RS; Ashoor H; Bajic VB
    Bioinformatics; 2018 Apr; 34(7):1164-1173. PubMed ID: 29186331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder.
    Zhang Y; Feng Y; Wu M; Deng Z; Wang S
    BMC Bioinformatics; 2023 Jul; 24(1):278. PubMed ID: 37415176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Prediction of DrugTarget Interactions Using Chemical, Biological, and Network Features.
    Cao DS; Zhang LX; Tan GS; Xiang Z; Zeng WB; Xu QS; Chen AF
    Mol Inform; 2014 Oct; 33(10):669-81. PubMed ID: 27485302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous network propagation with forward similarity integration to enhance drug-target association prediction.
    Tangmanussukum P; Kawichai T; Suratanee A; Plaimas K
    PeerJ Comput Sci; 2022; 8():e1124. PubMed ID: 36262151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring Interactions between Novel Drugs and Novel Targets via Instance-Neighborhood-Based Models.
    Shi JY; Li JX; Chen BL; Zhang Y
    Curr Protein Pept Sci; 2018; 19(5):488-497. PubMed ID: 27829347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions.
    An Q; Yu L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34373895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.