These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 32047614)

  • 21. The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats.
    Landry GJ; Yamakawa GR; Webb IC; Mear RJ; Mistlberger RE
    J Biol Rhythms; 2007 Dec; 22(6):467-78. PubMed ID: 18057321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anticipation of Scheduled Feeding in BTBR Mice Reveals Independence and Interactions Between the Light- and Food-Entrainable Circadian Clocks.
    Vijaya Shankara J; Mistlberger RE; Antle MC
    Front Integr Neurosci; 2022; 16():896200. PubMed ID: 35712346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stomach ghrelin-secreting cells as food-entrainable circadian clocks.
    LeSauter J; Hoque N; Weintraub M; Pfaff DW; Silver R
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13582-7. PubMed ID: 19633195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats.
    Landry GJ; Simon MM; Webb IC; Mistlberger RE
    Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1527-34. PubMed ID: 16424080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced food-anticipatory circadian rhythms in the genetically obese Zucker rat.
    Mistlberger RE; Marchant EG
    Physiol Behav; 1999 Apr; 66(2):329-35. PubMed ID: 10336162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Neuroscience; 2005; 133(1):293-303. PubMed ID: 15893651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dorsal striatum dopamine oscillations: Setting the pace of food anticipatory activity.
    de Lartigue G; McDougle M
    Acta Physiol (Oxf); 2019 Jan; 225(1):e13152. PubMed ID: 29920950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The adjustment and manipulation of biological rhythms by light, nutrition, and abused drugs.
    Shibata S; Tahara Y; Hirao A
    Adv Drug Deliv Rev; 2010 Jul; 62(9-10):918-27. PubMed ID: 20600408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.
    López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ
    Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of aging on food-entrained circadian rhythms in the rat.
    Mistlberger RE; Houpt TA; Moore-Ede MC
    Neurobiol Aging; 1990; 11(6):619-24. PubMed ID: 2280805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circadian discrimination of reward: evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat.
    Jansen HT; Sergeeva A; Stark G; Sorg BA
    Chronobiol Int; 2012 May; 29(4):454-68. PubMed ID: 22475541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust food anticipatory circadian rhythms in rats with complete ablation of the thalamic paraventricular nucleus.
    Landry GJ; Yamakawa GR; Mistlberger RE
    Brain Res; 2007 Apr; 1141():108-18. PubMed ID: 17296167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice.
    Gallardo CM; Darvas M; Oviatt M; Chang CH; Michalik M; Huddy TF; Meyer EE; Shuster SA; Aguayo A; Hill EM; Kiani K; Ikpeazu J; Martinez JS; Purpura M; Smit AN; Patton DF; Mistlberger RE; Palmiter RD; Steele AD
    Elife; 2014 Sep; 3():e03781. PubMed ID: 25217530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre- and post-nicotine circadian activity rhythms can be differentiated by a paired environmental cue.
    Gillman AG; Kosobud AE; Timberlake W
    Physiol Behav; 2008 Jan; 93(1-2):337-50. PubMed ID: 17961611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of circadian clocks by nutrients and food factors.
    Oike H
    Biosci Biotechnol Biochem; 2017 May; 81(5):863-870. PubMed ID: 28114877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A sex difference in circadian food-anticipatory rhythms in mice: Interaction with dopamine D1 receptor knockout.
    Michalik M; Steele AD; Mistlberger RE
    Behav Neurosci; 2015 Jun; 129(3):351-60. PubMed ID: 26030433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.
    Dattolo T; Coomans CP; van Diepen HC; Patton DF; Power S; Antle MC; Meijer JH; Mistlberger RE
    Neuroscience; 2016 Feb; 315():91-103. PubMed ID: 26701294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes.
    Mendoza J; Albrecht U; Challet E
    Genes Brain Behav; 2010 Jul; 9(5):467-77. PubMed ID: 20180860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.