BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32048021)

  • 1. Simultaneous X-ray Video-Fluoroscopy and Pulsed Ultrasound Velocimetry Analyses of the Pharyngeal Phase of Swallowing of Boluses with Different Rheological Properties.
    Qazi WM; Ekberg O; Wiklund J; Mansoor R; Stading M
    Dysphagia; 2020 Dec; 35(6):898-906. PubMed ID: 32048021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear and extensional rheology of commercial thickeners used for dysphagia management.
    Waqas MQ; Wiklund J; Altskär A; Ekberg O; Stading M
    J Texture Stud; 2017 Dec; 48(6):507-517. PubMed ID: 28464563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Importance of Extensional Rheology in Bolus Control during Swallowing.
    Hadde EK; Cichero JAY; Zhao S; Chen W; Chen J
    Sci Rep; 2019 Nov; 9(1):16106. PubMed ID: 31695062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the rheological properties of the liquid carrier on the in vitro swallowing of solid oral dosage forms.
    Lavoisier A; Shreeram S; Jedwab M; Ramaioli M
    J Texture Stud; 2021 Dec; 52(5-6):623-637. PubMed ID: 34118071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the Food-Swallowing Process Using Bolus Visualisation and Manometry Simultaneously in a Device that Models Human Swallowing.
    Qazi WM; Ekberg O; Wiklund J; Kotze R; Stading M
    Dysphagia; 2019 Dec; 34(6):821-833. PubMed ID: 30840137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of pharyngeal bolus flow influenced by bolus viscosity and apparent slip.
    Mizunuma H; Sonomura M; Shimokasa K
    J Texture Stud; 2020 Oct; 51(5):742-754. PubMed ID: 32329056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo observations and in vitro experiments on the oral phase of swallowing of Newtonian and shear-thinning liquids.
    Mowlavi S; Engmann J; Burbidge A; Lloyd R; Hayoun P; Le Reverend B; Ramaioli M
    J Biomech; 2016 Dec; 49(16):3788-3795. PubMed ID: 27823802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Preliminary Study of How the Viscosity of Dietary Fluids and Videofluoroscopy Fluids can be Matched.
    Suzuki H; Kondo I; Sakamoto K; Kimura K; Matsumoto T
    Dysphagia; 2016 Aug; 31(4):531-7. PubMed ID: 27146048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Device that Models Human Swallowing.
    Stading M; Waqas MQ; Holmberg F; Wiklund J; Kotze R; Ekberg O
    Dysphagia; 2019 Oct; 34(5):615-626. PubMed ID: 30673839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal for a Standard Protocol to Assess the Rheological Behavior of Thickening Products for Oropharyngeal Dysphagia.
    Bolivar-Prados M; Tomsen N; Hayakawa Y; Kawakami S; Miyaji K; Kayashita J; Clavé P
    Nutrients; 2022 Nov; 14(23):. PubMed ID: 36501058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bolus rheology and ease of swallowing of particulated semi-solid foods as evaluated by an elderly panel.
    Ben Tobin A; Mihnea M; Hildenbrand M; Miljkovic A; Garrido-Bañuelos G; Xanthakis E; Lopez-Sanchez P
    Food Funct; 2020 Oct; 11(10):8648-8658. PubMed ID: 32936178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contour tracking using a knowledge-based snake algorithm to construct three-dimensional pharyngeal bolus movement.
    Chang MW; Lin E; Hwang JN
    Dysphagia; 1999; 14(4):219-27. PubMed ID: 10467047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological Issues on Oropharyngeal Dysphagia.
    Gallegos C; Turcanu M; Assegehegn G; Brito-de la Fuente E
    Dysphagia; 2023 Apr; 38(2):558-585. PubMed ID: 34216239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Thickened Fluids Used in Dysphagia Management Using Extensional Rheology.
    Hadde EK; Nicholson TM; Cichero JAY
    Dysphagia; 2020 Apr; 35(2):242-252. PubMed ID: 31115661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of extensional rheology in the oral phase of swallowing: an in vitro study.
    Marconati M; Ramaioli M
    Food Funct; 2020 May; 11(5):4363-4375. PubMed ID: 32373829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing.
    Dantas RO; Kern MK; Massey BT; Dodds WJ; Kahrilas PJ; Brasseur JG; Cook IJ; Lang IM
    Am J Physiol; 1990 May; 258(5 Pt 1):G675-81. PubMed ID: 2333995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bolus rheology of texture-modified food: Effect of degree of modification.
    Stading M
    J Texture Stud; 2021 Dec; 52(5-6):540-551. PubMed ID: 33760231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic method to characterize shear wave propagation in micellar fluids.
    Amador C; Otilio BL; Kinnick RR; Urban MW
    J Acoust Soc Am; 2016 Sep; 140(3):1719. PubMed ID: 27914388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accommodation to changes in bolus viscosity in normal deglutition: a videofluoroscopic study.
    Kendall KA; Leonard RJ; McKenzie SW
    Ann Otol Rhinol Laryngol; 2001 Nov; 110(11):1059-65. PubMed ID: 11713919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscosity and non-Newtonian features of thickened fluids used for dysphagia therapy.
    O'Leary M; Hanson B; Smith C
    J Food Sci; 2010 Aug; 75(6):E330-8. PubMed ID: 20722917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.