BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32048093)

  • 1. Oxygen response of leaf CO
    Miyazawa SI; Tobita H; Ujino-Ihara T; Suzuki Y
    J Plant Res; 2020 Mar; 133(2):205-215. PubMed ID: 32048093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty in measurements of the photorespiratory CO
    Walker BJ; Orr DJ; Carmo-Silva E; Parry MAJ; Bernacchi CJ; Ort DR
    Photosynth Res; 2017 Jun; 132(3):245-255. PubMed ID: 28382593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The maximum carboxylation rate of Rubisco affects CO
    Eckert D; Jensen AM; Gu L
    Plant Physiol Biochem; 2020 Oct; 155():330-337. PubMed ID: 32798901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.
    Galmés J; Hermida-Carrera C; Laanisto L; Niinemets Ü
    J Exp Bot; 2016 Sep; 67(17):5067-91. PubMed ID: 27406782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures.
    Yamori W; Suzuki K; Noguchi K; Nakai M; Terashima I
    Plant Cell Environ; 2006 Aug; 29(8):1659-70. PubMed ID: 16898026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.
    Scafaro AP; Xiang S; Long BM; Bahar NHA; Weerasinghe LK; Creek D; Evans JR; Reich PB; Atkin OK
    Glob Chang Biol; 2017 Jul; 23(7):2783-2800. PubMed ID: 27859952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of species-specific and temperature-sensitive parameterisation of A/C
    Sargent D; Amthor JS; Stinziano JR; Evans JR; Whitney SM; Bange MP; Tissue DT; Conaty WC; Sharwood RE
    Plant Cell Environ; 2024 May; 47(5):1701-1715. PubMed ID: 38294051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photorespiratory compensation: a driver for biological diversity.
    Sage RF
    Plant Biol (Stuttg); 2013 Jul; 15(4):624-38. PubMed ID: 23656429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sensitivity of photosynthesis to O
    Busch FA; Sage RF
    New Phytol; 2017 Feb; 213(3):1036-1051. PubMed ID: 27768823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Photorespiratory Fluxes by Gas Exchange.
    Busch FA; Deans RM; Holloway-Phillips MM
    Methods Mol Biol; 2017; 1653():1-15. PubMed ID: 28822122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plants increase CO
    Busch FA; Sage RF; Farquhar GD
    Nat Plants; 2018 Jan; 4(1):46-54. PubMed ID: 29229957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rubisco catalytic adaptation is mostly driven by photosynthetic conditions - Not by phylogenetic constraints.
    Tcherkez G; Farquhar GD
    J Plant Physiol; 2021 Dec; 267():153554. PubMed ID: 34749030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cyanobacterial photorespiratory bypass model to enhance photosynthesis by rerouting photorespiratory pathway in C
    Khurshid G; Abbassi AZ; Khalid MF; Gondal MN; Naqvi TA; Shah MM; Chaudhary SU; Ahmad R
    Sci Rep; 2020 Nov; 10(1):20879. PubMed ID: 33257792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae).
    Galmés J; Andralojc PJ; Kapralov MV; Flexas J; Keys AJ; Molins A; Parry MA; Conesa MÀ
    New Phytol; 2014 Aug; 203(3):989-99. PubMed ID: 24861241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rubisco substitutions predicted to enhance crop performance through carbon uptake modelling.
    Iqbal WA; Miller IG; Moore RL; Hope IJ; Cowan-Turner D; Kapralov MV
    J Exp Bot; 2021 Sep; 72(17):6066-6075. PubMed ID: 34115846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting Trade-offs between Rubisco Kinetic Parameters.
    Flamholz AI; Prywes N; Moran U; Davidi D; Bar-On YM; Oltrogge LM; Alves R; Savage D; Milo R
    Biochemistry; 2019 Aug; 58(31):3365-3376. PubMed ID: 31259528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction.
    Ruuska SA; Badger MR; Andrews TJ; von Caemmerer S
    J Exp Bot; 2000 Feb; 51 Spec No():357-68. PubMed ID: 10938843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of temperature on measurements of the CO2 compensation point: differences between the Laisk and O2-exchange methods.
    Walker BJ; Cousins AB
    J Exp Bot; 2013 Apr; 64(7):1893-905. PubMed ID: 23630324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves.
    Ethier GJ; Livingston NJ; Harrison DL; Black TA; Moran JA
    Plant Cell Environ; 2006 Dec; 29(12):2168-84. PubMed ID: 17081250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.