These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32048473)

  • 1. The cellular stress response in fish exposed to salinity fluctuations.
    Evans TG; Kültz D
    J Exp Zool A Ecol Integr Physiol; 2020 Jul; 333(6):421-435. PubMed ID: 32048473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological mechanisms used by fish to cope with salinity stress.
    Kültz D
    J Exp Biol; 2015 Jun; 218(Pt 12):1907-14. PubMed ID: 26085667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus, a euryhaline fish.
    Gui L; Zhang P; Liang X; Su M; Wu D; Zhang J
    Gene; 2016 Jun; 583(2):134-140. PubMed ID: 26911257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic stress sensing and signaling in fishes.
    Fiol DF; Kültz D
    FEBS J; 2007 Nov; 274(22):5790-8. PubMed ID: 17944942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salinity stress response in estuarine fishes from the Murray Estuary and Coorong, South Australia.
    Hossain MA; Aktar S; Qin JG
    Fish Physiol Biochem; 2016 Dec; 42(6):1571-1580. PubMed ID: 27220634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why are there so few freshwater fish species in most estuaries?
    Whitfield AK
    J Fish Biol; 2015 Apr; 86(4):1227-50. PubMed ID: 25739335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological responses of a juvenile marine estuarine-dependent fish (Family Sparidae) to changing salinity.
    Kisten Y; Strydom NA; Perissinotto R; Mpinga MS; Paul S
    Fish Physiol Biochem; 2019 Oct; 45(5):1523-1531. PubMed ID: 30976962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic control in marine animals.
    Davenport J
    Symp Soc Exp Biol; 1985; 39():207-44. PubMed ID: 2939580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).
    Sinha AK; AbdElgawad H; Zinta G; Dasan AF; Rasoloniriana R; Asard H; Blust R; De Boeck G
    PLoS One; 2015; 10(8):e0135091. PubMed ID: 26241315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salinity shapes the stress responses and energy reserves of marine polychaetes exposed to warming: From molecular to functional phenotypes.
    Madeira D; Fernandes JF; Jerónimo D; Martins P; Ricardo F; Santos A; Domingues MR; Diniz MS; Calado R
    Sci Total Environ; 2021 Nov; 795():148634. PubMed ID: 34246144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptations of semen characteristics and sperm motility to harsh salinity: Extreme situations encountered by the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859).
    Legendre M; Alavi SM; Dzyuba B; Linhart O; Prokopchuk G; Cochet C; Dugué R; Cosson J
    Theriogenology; 2016 Sep; 86(5):1251-67. PubMed ID: 27260510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin-like growth factor 1 triggers salt secretion machinery in fish under acute salinity stress.
    Yan JJ; Lee YC; Tsou YL; Tseng YC; Hwang PP
    J Endocrinol; 2020 Sep; 246(3):277-288. PubMed ID: 32698133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of salinity and water chemistry on acute toxicity of cadmium to two euryhaline fish species.
    Bielmyer-Fraser GK; Harper B; Picariello C; Albritton-Ford A
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Dec; 214():23-27. PubMed ID: 30172735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity to salinization and acclimation potential of amphibian (Pelophylax perezi) and fish (Lepomis gibbosus) models.
    Venâncio C; Castro BB; Ribeiro R; Antunes SC; Lopes I
    Ecotoxicol Environ Saf; 2019 May; 172():348-355. PubMed ID: 30731265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics of hyposaline stress in blue mussel congeners (genus Mytilus): implications for biogeographic range limits in response to climate change.
    Tomanek L; Zuzow MJ; Hitt L; Serafini L; Valenzuela JJ
    J Exp Biol; 2012 Nov; 215(Pt 22):3905-16. PubMed ID: 22899524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The physiological responses of green sturgeon (Acipenser medirostris) to potential global climate change stressors.
    Sardella BA; Kültz D
    Physiol Biochem Zool; 2014; 87(3):456-63. PubMed ID: 24769709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional analysis of renal dopamine-mediated Na
    Su M; Zhou J; Duan Z; Zhang J
    BMC Genomics; 2019 May; 20(1):418. PubMed ID: 31126236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.
    Agha M; Ennen JR; Bower DS; Nowakowski AJ; Sweat SC; Todd BD
    Biol Rev Camb Philos Soc; 2018 Aug; 93(3):1634-1648. PubMed ID: 29575680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish.
    Van der Linden A; Verhoye M; Pörtner HO; Bock C
    MAGMA; 2004 Dec; 17(3-6):236-48. PubMed ID: 15614515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new role for carbonic anhydrase 2 in the response of fish to copper and osmotic stress: implications for multi-stressor studies.
    de Polo A; Margiotta-Casaluci L; Lockyer AE; Scrimshaw MD
    PLoS One; 2014; 9(10):e107707. PubMed ID: 25272015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.