These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 32048531)
1. Discovery of small molecule inhibitors of Batista FAH; Ramos SL; Tassone G; Leitão A; Montanari CA; Botta M; Mori M; Borges JC J Enzyme Inhib Med Chem; 2020 Dec; 35(1):639-649. PubMed ID: 32048531 [TBL] [Abstract][Full Text] [Related]
2. Identification of two p23 co-chaperone isoforms in Leishmania braziliensis exhibiting similar structures and Hsp90 interaction properties despite divergent stabilities. Batista FA; Almeida GS; Seraphim TV; Silva KP; Murta SM; Barbosa LR; Borges JC FEBS J; 2015 Jan; 282(2):388-406. PubMed ID: 25369258 [TBL] [Abstract][Full Text] [Related]
3. Low resolution structural studies indicate that the activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis has an elongated shape which allows its interaction with both N- and M-domains of Hsp90. Seraphim TV; Alves MM; Silva IM; Gomes FE; Silva KP; Murta SM; Barbosa LR; Borges JC PLoS One; 2013; 8(6):e66822. PubMed ID: 23826147 [TBL] [Abstract][Full Text] [Related]
4. Probing the role of Arg97 in Heat shock protein 90 N-terminal domain from the parasite Leishmania braziliensis through site-directed mutagenesis on the human counterpart. Tassone G; Mangani S; Botta M; Pozzi C Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1190-1198. PubMed ID: 30248409 [TBL] [Abstract][Full Text] [Related]
5. Unveiling six potent and highly selective antileishmanial agents via the open source compound collection 'Pathogen Box' against antimony-sensitive and -resistant Leishmania braziliensis. Souza Silva JA; Tunes LG; Coimbra RS; Ascher DB; Pires DEV; Monte-Neto RL Biomed Pharmacother; 2021 Jan; 133():111049. PubMed ID: 33378956 [TBL] [Abstract][Full Text] [Related]
11. In vitro activity of scorpiand-like azamacrocycle derivatives in promastigotes and intracellular amastigotes of Leishmania infantum and Leishmania braziliensis. Marín C; Clares MP; Ramírez-Macías I; Blasco S; Olmo F; Soriano C; Verdejo B; Rosales MJ; Gomez-Herrera D; García-España E; Sánchez-Moreno M Eur J Med Chem; 2013 Apr; 62():466-77. PubMed ID: 23395967 [TBL] [Abstract][Full Text] [Related]
12. Detection of the ATPase activity of the molecular chaperones Hsp90 and Hsp72 using the TranscreenerTM ADP assay kit. Rowlands M; McAndrew C; Prodromou C; Pearl L; Kalusa A; Jones K; Workman P; Aherne W J Biomol Screen; 2010 Mar; 15(3):279-86. PubMed ID: 20147598 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional studies of the Leishmania braziliensis SGT co-chaperone indicate that it shares structural features with HIP and can interact with both Hsp90 and Hsp70 with similar affinities. Coto ALS; Seraphim TV; Batista FAH; Dores-Silva PR; Barranco ABF; Teixeira FR; Gava LM; Borges JC Int J Biol Macromol; 2018 Oct; 118(Pt A):693-706. PubMed ID: 29959008 [TBL] [Abstract][Full Text] [Related]
15. Design, synthesis, structure-activity relationship and mechanism of action studies of a series of 4-chloro-1-phthalazinyl hydrazones as a potent agent against Leishmania braziliensis. Romero AH; Medina R; Alcala A; García-Marchan Y; Núñez-Duran J; Leañez J; Mijoba A; Ciangherotti C; Serrano-Martín X; López SE Eur J Med Chem; 2017 Feb; 127():606-620. PubMed ID: 28119201 [TBL] [Abstract][Full Text] [Related]
16. The efficacy of new 2,5-dihydroxybenzyl derivatives against Trypanosoma cruzi, Leishmania infantum and Leishmania braziliensis. Rolón M; Peixoto de Abreu Lima A; Coronel C; Vega MC; Pandolfi E; Rojas de Arias A J Infect Dev Ctries; 2019 Jun; 13(6):565-576. PubMed ID: 32058992 [TBL] [Abstract][Full Text] [Related]
17. High-throughput screening for Hsp90 ATPase inhibitors. Avila C; Hadden MK; Ma Z; Kornilayev BA; Ye QZ; Blagg BS Bioorg Med Chem Lett; 2006 Jun; 16(11):3005-8. PubMed ID: 16530412 [TBL] [Abstract][Full Text] [Related]
18. Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone. Singh JK; Hutt DM; Tait B; Guy NC; Sivils JC; Ortiz NR; Payan AN; Komaragiri SK; Owens JJ; Culbertson D; Blair LJ; Dickey C; Kuo SY; Finley D; Dyson HJ; Cox MB; Chaudhary J; Gestwicki JE; Balch WE Cell Chem Biol; 2020 Mar; 27(3):292-305.e6. PubMed ID: 32017918 [TBL] [Abstract][Full Text] [Related]
19. In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species. Sánchez-Moreno M; Gómez-Contreras F; Navarro P; Marín C; Ramírez-Macías I; Olmo F; Sanz AM; Campayo L; Cano C; Yunta MJ J Antimicrob Chemother; 2012 Feb; 67(2):387-97. PubMed ID: 22127582 [TBL] [Abstract][Full Text] [Related]
20. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design. Pizarro JC; Hills T; Senisterra G; Wernimont AK; Mackenzie C; Norcross NR; Ferguson MA; Wyatt PG; Gilbert IH; Hui R PLoS Negl Trop Dis; 2013; 7(10):e2492. PubMed ID: 24147171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]