These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 32048689)

  • 1. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities.
    Wang D; Xu Y; Li Q; Turng LS
    J Mater Chem B; 2020 Mar; 8(9):1801-1822. PubMed ID: 32048689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review.
    Obiweluozor FO; Emechebe GA; Kim DW; Cho HJ; Park CH; Kim CS; Jeong IS
    Cardiovasc Eng Technol; 2020 Oct; 11(5):495-521. PubMed ID: 32812139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabric-Enhanced Vascular Graft with Hierarchical Structure for Promoting the Regeneration of Vascular Tissue.
    Ma W; Liu Z; Zhu T; Wang L; Du J; Wang K; Xu C
    Adv Healthc Mater; 2024 Jun; 13(16):e2302676. PubMed ID: 38279911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. History, progress and future challenges of artificial blood vessels: a narrative review.
    Hu K; Li Y; Ke Z; Yang H; Lu C; Li Y; Guo Y; Wang W
    Biomater Transl; 2022; 3(1):81-98. PubMed ID: 35837341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Elasticity of Blood Vessels and Vascular Grafts.
    Wang X; Li K; Yuan Y; Zhang N; Zou Z; Wang Y; Yan S; Li X; Zhao P; Li Q
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3631-3654. PubMed ID: 38815169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts.
    Soletti L; Hong Y; Guan J; Stankus JJ; El-Kurdi MS; Wagner WR; Vorp DA
    Acta Biomater; 2010 Jan; 6(1):110-22. PubMed ID: 19540370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined method for bilayered vascular graft fabrication.
    Al Kayal T; Maniglio D; Bonani W; Losi P; Migliaresi C; Soldani G
    J Mater Sci Mater Med; 2015 Feb; 26(2):96. PubMed ID: 25652773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterisation of an electrospun tubular 3D scaffold platform of poly(vinylidene fluoride-co-hexafluoropropylene) for small-diameter blood vessel application.
    Ahmed F; Roy Choudhury N; Dutta NK; Zou L; Zannettino A
    J Biomater Sci Polym Ed; 2014; 25(18):2023-41. PubMed ID: 25358334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of corrugated structure on the collapsing of the small-diameter vascular scaffolds.
    Akbari S; Mohebbi-Kalhori D; Samimi A
    J Biomater Appl; 2020 May; 34(10):1355-1367. PubMed ID: 32148156
    [No Abstract]   [Full Text] [Related]  

  • 11. 3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell Layers.
    Zhou X; Nowicki M; Sun H; Hann SY; Cui H; Esworthy T; Lee JD; Plesniak M; Zhang LG
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):45904-45915. PubMed ID: 33006880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering.
    Dimopoulos A; Markatos DN; Mitropoulou A; Panagiotopoulos I; Koletsis E; Mavrilas D
    J Mater Sci Mater Med; 2021 Mar; 32(2):21. PubMed ID: 33649939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofabrication of small diameter tissue-engineered vascular grafts.
    Weekes A; Bartnikowski N; Pinto N; Jenkins J; Meinert C; Klein TJ
    Acta Biomater; 2022 Jan; 138():92-111. PubMed ID: 34781026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small caliber vascular grafts. Part II: Polyurethanes revisited.
    Zdrahala RJ
    J Biomater Appl; 1996 Jul; 11(1):37-61. PubMed ID: 8872599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system.
    Lee SJ; Heo DN; Park JS; Kwon SK; Lee JH; Lee JH; Kim WD; Kwon IK; Park SA
    Phys Chem Chem Phys; 2015 Feb; 17(5):2996-9. PubMed ID: 25557615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterials for vascular tissue engineering.
    Ravi S; Chaikof EL
    Regen Med; 2010 Jan; 5(1):107-20. PubMed ID: 20017698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun PET/PCL small diameter nanofibrous conduit for biomedical application.
    Rahmati Nejad M; Yousefzadeh M; Solouk A
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110692. PubMed ID: 32204006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprinting of artificial blood vessels: current approaches towards a demanding goal.
    Hoch E; Tovar GE; Borchers K
    Eur J Cardiothorac Surg; 2014 Nov; 46(5):767-78. PubMed ID: 24970571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review.
    Awad NK; Niu H; Ali U; Morsi YS; Lin T
    Membranes (Basel); 2018 Mar; 8(1):. PubMed ID: 29509698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.