These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32048835)

  • 1. Two-Dimensional Ti
    Gao H; Chen W; Xu C; Liu S; Tong X; Chen Y
    Environ Sci Technol; 2020 Mar; 54(5):2931-2940. PubMed ID: 32048835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.
    Kim YC; Kim Y; Oh D; Lee KH
    Environ Sci Technol; 2013 Mar; 47(6):2966-73. PubMed ID: 23398240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.
    Han G; Wang P; Chung TS
    Environ Sci Technol; 2013 Jul; 47(14):8070-7. PubMed ID: 23772898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2011 Dec; 45(23):10273-82. PubMed ID: 22022858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.
    Straub AP; Lin S; Elimelech M
    Environ Sci Technol; 2014 Oct; 48(20):12435-44. PubMed ID: 25222561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.
    Li X; Cai T; Chen C; Chung TS
    Water Res; 2016 Feb; 89():50-8. PubMed ID: 26630043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Ti
    Hong S; Ming F; Shi Y; Li R; Kim IS; Tang CY; Alshareef HN; Wang P
    ACS Nano; 2019 Aug; 13(8):8917-8925. PubMed ID: 31305989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.
    Shaulsky E; Boo C; Lin S; Elimelech M
    Environ Sci Technol; 2015 May; 49(9):5820-7. PubMed ID: 25839239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Quantum Dots Grafted Antifouling Membranes for Osmotic Power Generation via Pressure-Retarded Osmosis Process.
    Zhao DL; Das S; Chung TS
    Environ Sci Technol; 2017 Dec; 51(23):14016-14023. PubMed ID: 29161033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.
    Klaysom C; Cath TY; Depuydt T; Vankelecom IF
    Chem Soc Rev; 2013 Aug; 42(16):6959-89. PubMed ID: 23778699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Grade Waste Heat Recovery via an Osmotic Heat Engine by Using a Freestanding Graphene Oxide Membrane.
    Tong X; Wang X; Liu S; Gao H; Hao R; Chen Y
    ACS Omega; 2018 Nov; 3(11):15501-15509. PubMed ID: 31458206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure retarded osmosis for energy production: membrane materials and operating conditions.
    Kim H; Choi JS; Lee S
    Water Sci Technol; 2012; 65(10):1789-94. PubMed ID: 22546793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures.
    Straub AP; Osuji CO; Cath TY; Elimelech M
    Environ Sci Technol; 2015 Oct; 49(20):12551-9. PubMed ID: 26393282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Anti-Fouling Membranes for Osmotic Power Generation from Wastewater via Pressure Retarded Osmosis (PRO).
    Han G; Liu JT; Lu KJ; Chung TS
    Environ Sci Technol; 2018 Jun; 52(11):6686-6694. PubMed ID: 29741369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation.
    Chen SC; Amy GL; Chung TS
    Water Res; 2016 Jan; 88():144-155. PubMed ID: 26492341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.
    Yip NY; Elimelech M
    Environ Sci Technol; 2013; 47(21):12607-16. PubMed ID: 24099133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zwitterions coated hollow fiber membranes with enhanced antifouling properties for osmotic power generation from municipal wastewater.
    Zhao D; Qiu G; Li X; Wan C; Lu K; Chung TS
    Water Res; 2016 Nov; 104():389-396. PubMed ID: 27579868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofiber supported thin-film composite membrane for pressure-retarded osmosis.
    Bui NN; McCutcheon JR
    Environ Sci Technol; 2014 Apr; 48(7):4129-36. PubMed ID: 24387600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.