These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32048950)

  • 21. Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks.
    Lim YB; Moon KS; Lee M
    Chem Soc Rev; 2009 Apr; 38(4):925-34. PubMed ID: 19421572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational Design of Chiral Nanostructures from Self-Assembly of a Ferrocene-Modified Dipeptide.
    Wang Y; Qi W; Huang R; Yang X; Wang M; Su R; He Z
    J Am Chem Soc; 2015 Jun; 137(24):7869-80. PubMed ID: 26018930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers.
    Levin A; Mason TO; Adler-Abramovich L; Buell AK; Meisl G; Galvagnion C; Bram Y; Stratford SA; Dobson CM; Knowles TP; Gazit E
    Nat Commun; 2014 Nov; 5():5219. PubMed ID: 25391268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unravelling the 2D self-assembly of Fmoc-dipeptides at fluid interfaces.
    Argudo PG; Contreras-Montoya R; Álvarez de Cienfuegos L; Cuerva JM; Cano M; Alba-Molina D; Martín-Romero MT; Camacho L; Giner-Casares JJ
    Soft Matter; 2018 Nov; 14(46):9343-9350. PubMed ID: 30307451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Assembly of Phenylalanine-Leucine, Leucine-Phenylalanine, and Cyclo(-leucine-phenylalanine) Dipeptides through Simulations and Experiments.
    Divanach P; Fanouraki E; Mitraki A; Harmandaris V; Rissanou AN
    J Phys Chem B; 2023 May; 127(19):4208-4219. PubMed ID: 37148280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of trigonal building blocks into nanostructures: molecular design and biomedical applications.
    Long K; Liu Y; Li Y; Wang W
    J Mater Chem B; 2020 Aug; 8(31):6739-6752. PubMed ID: 32686806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Principles of self-assembly of helical pores from dendritic dipeptides.
    Percec V; Dulcey AE; Peterca M; Ilies M; Nummelin S; Sienkowska MJ; Heiney PA
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2518-23. PubMed ID: 16469843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular chemical biology; bioactive synthetic self-assemblies.
    Petkau-Milroy K; Brunsveld L
    Org Biomol Chem; 2013 Jan; 11(2):219-32. PubMed ID: 23160566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dipeptide self-assembly into water-channels and gel biomaterial.
    Bellotto O; Pierri G; Rozhin P; Polentarutti M; Kralj S; D'Andrea P; Tedesco C; Marchesan S
    Org Biomol Chem; 2022 Aug; 20(31):6211-6218. PubMed ID: 35575102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Folding to Assembly: Functional Supramolecular Architectures of Peptides Comprised of Non-Canonical Amino Acids.
    Misra R; Rudnick-Glick S; Adler-Abramovich L
    Macromol Biosci; 2021 Aug; 21(8):e2100090. PubMed ID: 34142442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microporous organic materials from hydrophobic dipeptides.
    Görbitz CH
    Chemistry; 2007; 13(4):1022-31. PubMed ID: 17200919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and application of dipeptides; current status and perspectives.
    Yagasaki M; Hashimoto S
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):13-22. PubMed ID: 18795289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Assembly Propensity Dictates Lifetimes in Transient Naphthalimide-Dipeptide Nanofibers.
    Kumar M; Sementa D; Narang V; Riedo E; Ulijn RV
    Chemistry; 2020 Jul; 26(38):8372-8376. PubMed ID: 32428282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design Principles of Peptide Based Self-Assembled Nanomaterials.
    Seoudi RS; Mechler A
    Adv Exp Med Biol; 2017; 1030():51-94. PubMed ID: 29081050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly.
    Ji W; Yuan C; Zilberzwige-Tal S; Xing R; Chakraborty P; Tao K; Gilead S; Yan X; Gazit E
    ACS Nano; 2019 Jun; 13(6):7300-7309. PubMed ID: 31181152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of self-assembled nanostructures for intracellular drug delivery from diphenylalanine analogues with rigid or flexible chemical linkers.
    Arul A; Rana P; Das K; Pan I; Mandal D; Stewart A; Maity B; Ghosh S; Das P
    Nanoscale Adv; 2021 Oct; 3(21):6176-6190. PubMed ID: 36133937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide.
    You Y; Xing R; Zou Q; Shi F; Yan X
    Beilstein J Nanotechnol; 2019; 10():1894-1901. PubMed ID: 31598455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of 1-D n-type nanostructures based on naphthalene diimide-appended dipeptides.
    Shao H; Nguyen T; Romano NC; Modarelli DA; Parquette JR
    J Am Chem Soc; 2009 Nov; 131(45):16374-6. PubMed ID: 19852501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.
    Schnaider L; Brahmachari S; Schmidt NW; Mensa B; Shaham-Niv S; Bychenko D; Adler-Abramovich L; Shimon LJW; Kolusheva S; DeGrado WF; Gazit E
    Nat Commun; 2017 Nov; 8(1):1365. PubMed ID: 29118336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.