BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32048964)

  • 1. Plant Virus Nanoparticles for Vaccine Applications.
    Santoni M; Zampieri R; Avesani L
    Curr Protein Pept Sci; 2020; 21(4):344-356. PubMed ID: 32048964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity.
    Pascual E; Mata CP; Gómez-Blanco J; Moreno N; Bárcena J; Blanco E; Rodríguez-Frandsen A; Nieto A; Carrascosa JL; Castón JR
    J Virol; 2015 Mar; 89(5):2563-74. PubMed ID: 25520499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering virus-like particles as vaccine platforms.
    Frietze KM; Peabody DS; Chackerian B
    Curr Opin Virol; 2016 Jun; 18():44-9. PubMed ID: 27039982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy.
    Narayanan KB; Han SS
    Virus Genes; 2018 Oct; 54(5):623-637. PubMed ID: 30008053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel expression of immunogenic foot-and-mouth disease virus-like particles in Nicotiana benthamiana.
    Veerapen VP; van Zyl AR; Wigdorovitz A; Rybicki EP; Meyers AE
    Virus Res; 2018 Jan; 244():213-217. PubMed ID: 29196195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of three virus-derived nanoparticles as a vaccine against enteric pathogens; enterovirus, norovirus and rotavirus.
    Heinimäki S; Hankaniemi MM; Sioofy-Khojine AB; Laitinen OH; Hyöty H; Hytönen VP; Vesikari T; Blazevic V
    Vaccine; 2019 Dec; 37(51):7509-7518. PubMed ID: 31585726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viral nanoparticles for in vivo tumor imaging.
    Wen AM; Lee KL; Yildiz I; Bruckman MA; Shukla S; Steinmetz NF
    J Vis Exp; 2012 Nov; (69):e4352. PubMed ID: 23183850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional plant virus nanoparticles in the next generation of cancer immunotherapies.
    Shahgolzari M; Dianat-Moghadam H; Fiering S
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):1076-1085. PubMed ID: 34375725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures.
    Narayanan KB; Han SS
    Adv Colloid Interface Sci; 2017 Oct; 248():1-19. PubMed ID: 28916111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization.
    Brune KD; Leneghan DB; Brian IJ; Ishizuka AS; Bachmann MF; Draper SJ; Biswas S; Howarth M
    Sci Rep; 2016 Jan; 6():19234. PubMed ID: 26781591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant molecular farming of virus-like nanoparticles as vaccines and reagents.
    Rybicki EP
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Mar; 12(2):e1587. PubMed ID: 31486296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Potential of Plant Virus Nanoparticles (PVNPs) in Anticancer Immunotherapies.
    Shahgolzari M; Fiering S
    J Cancer Immunol (Wilmington); 2022; 4(1):22-29. PubMed ID: 35600219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases.
    Tao P; Zhu J; Mahalingam M; Batra H; Rao VB
    Adv Drug Deliv Rev; 2019 May; 145():57-72. PubMed ID: 29981801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo toxicity evaluation of plant virus nanocarriers.
    Blandino A; Lico C; Baschieri S; Barberini L; Cirotto C; Blasi P; Santi L
    Colloids Surf B Biointerfaces; 2015 May; 129():130-6. PubMed ID: 25847457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-Based Vaccines Against Respiratory Viruses.
    Al-Halifa S; Gauthier L; Arpin D; Bourgault S; Archambault D
    Front Immunol; 2019; 10():22. PubMed ID: 30733717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccine synergy with virus-like particle and immune complex platforms for delivery of human papillomavirus L2 antigen.
    Diamos AG; Larios D; Brown L; Kilbourne J; Kim HS; Saxena D; Palmer KE; Mason HS
    Vaccine; 2019 Jan; 37(1):137-144. PubMed ID: 30459071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets.
    Pillet S; Racine T; Nfon C; Di Lenardo TZ; Babiuk S; Ward BJ; Kobinger GP; Landry N
    Vaccine; 2015 Nov; 33(46):6282-9. PubMed ID: 26432915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras.
    Pineo CB; Hitzeroth II; Rybicki EP
    Plant Biotechnol J; 2013 Oct; 11(8):964-75. PubMed ID: 23924054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana.
    Shoji Y; Prokhnevsky A; Leffet B; Vetter N; Tottey S; Satinover S; Musiychuk K; Shamloul M; Norikane J; Jones RM; Chichester JA; Green BJ; Streatfield SJ; Yusibov V
    Hum Vaccin Immunother; 2015; 11(1):118-23. PubMed ID: 25483524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos.
    Shahgolzari M; Pazhouhandeh M; Milani M; Yari Khosroushahi A; Fiering S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Sep; 12(5):e1629. PubMed ID: 32249552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.