BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32049055)

  • 21. Matrix Stiffening and EGFR Cooperate to Promote the Collective Invasion of Cancer Cells.
    Grasset EM; Bertero T; Bozec A; Friard J; Bourget I; Pisano S; Lecacheur M; Maiel M; Bailleux C; Emelyanov A; Ilie M; Hofman P; Meneguzzi G; Duranton C; Bulavin DV; Gaggioli C
    Cancer Res; 2018 Sep; 78(18):5229-5242. PubMed ID: 30026329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasticity of Cancer Cell Invasion-Mechanisms and Implications for Therapy.
    Te Boekhorst V; Friedl P
    Adv Cancer Res; 2016; 132():209-64. PubMed ID: 27613134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion.
    Ilina O; Bakker GJ; Vasaturo A; Hofmann RM; Friedl P
    Phys Biol; 2011 Feb; 8(1):015010. PubMed ID: 21301056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Mechanics of Single Cell and Collective Migration of Tumor Cells.
    Lintz M; Muñoz A; Reinhart-King CA
    J Biomech Eng; 2017 Feb; 139(2):0210051-9. PubMed ID: 27814431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasticity of tumor cell invasion: governance by growth factors and cytokines.
    Odenthal J; Takes R; Friedl P
    Carcinogenesis; 2016 Dec; 37(12):1117-1128. PubMed ID: 27664164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanochemical Coupling and Junctional Forces during Collective Cell Migration.
    Bui J; Conway DE; Heise RL; Weinberg SH
    Biophys J; 2019 Jul; 117(1):170-183. PubMed ID: 31200935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Randomly Distributed K14
    Hwang PY; Brenot A; King AC; Longmore GD; George SC
    Cancer Res; 2019 Apr; 79(8):1899-1912. PubMed ID: 30862718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells.
    Zhang J; Goliwas KF; Wang W; Taufalele PV; Bordeleau F; Reinhart-King CA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7867-7872. PubMed ID: 30923113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network.
    Kim MC; Whisler J; Silberberg YR; Kamm RD; Asada HH
    PLoS Comput Biol; 2015 Oct; 11(10):e1004535. PubMed ID: 26436883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tube travel: the role of proteases in individual and collective cancer cell invasion.
    Friedl P; Wolf K
    Cancer Res; 2008 Sep; 68(18):7247-9. PubMed ID: 18794108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-ECM Interactions in Tumor Invasion.
    He X; Lee B; Jiang Y
    Adv Exp Med Biol; 2016; 936():73-91. PubMed ID: 27739043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue-derived extracellular matrix-based three-dimensional tumor model.
    Koh I; Cha J; Park J; Choi J; Kang SG; Kim P
    Sci Rep; 2018 Mar; 8(1):4608. PubMed ID: 29545552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular Matrix Derived from High Metastatic Human Breast Cancer Triggers Epithelial-Mesenchymal Transition in Epithelial Breast Cancer Cells through αvβ3 Integrin.
    M Brandão-Costa R; Helal-Neto E; M Vieira A; Barcellos-de-Souza P; Morgado-Diaz J; Barja-Fidalgo C
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32340328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ECM Composition and Rheology Regulate Growth, Motility, and Response to Photodynamic Therapy in 3D Models of Pancreatic Ductal Adenocarcinoma.
    Cramer GM; Jones DP; El-Hamidi H; Celli JP
    Mol Cancer Res; 2017 Jan; 15(1):15-25. PubMed ID: 27671335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions.
    Wang K; Wu F; Seo BR; Fischbach C; Chen W; Hsu L; Gourdon D
    Matrix Biol; 2017 Jul; 60-61():86-95. PubMed ID: 27503584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microenvironmental Stiffness of 3D Polymeric Structures to Study Invasive Rates of Cancer Cells.
    Lemma ED; Spagnolo B; Rizzi F; Corvaglia S; Pisanello M; De Vittorio M; Pisanello F
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29106056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing three-dimensional collective cancer invasion with DIGME.
    Alobaidi AA; Sun B
    Cancer Converg; 2017; 1(1):1. PubMed ID: 29623954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phagocytized beads reduce the α5β1 integrin facilitated invasiveness of cancer cells by regulating cellular stiffness.
    Mierke CT
    Cell Biochem Biophys; 2013 Jul; 66(3):599-622. PubMed ID: 23329175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion.
    Wolf K; Wu YI; Liu Y; Geiger J; Tam E; Overall C; Stack MS; Friedl P
    Nat Cell Biol; 2007 Aug; 9(8):893-904. PubMed ID: 17618273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells.
    Lehmann S; Te Boekhorst V; Odenthal J; Bianchi R; van Helvert S; Ikenberg K; Ilina O; Stoma S; Xandry J; Jiang L; Grenman R; Rudin M; Friedl P
    Curr Biol; 2017 Feb; 27(3):392-400. PubMed ID: 28089517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.