These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32049074)

  • 1. Femtoliter Volumetric Pipette and Flask Utilizing Nanofluidics.
    Nakao T; Kazoe Y; Morikawa K; Lin L; Mawatari K; Kitamori T
    Analyst; 2020 Apr; 145(7):2669-2675. PubMed ID: 32049074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtoliter nanofluidic valve utilizing glass deformation.
    Kazoe Y; Pihosh Y; Takahashi H; Ohyama T; Sano H; Morikawa K; Mawatari K; Kitamori T
    Lab Chip; 2019 Apr; 19(9):1686-1694. PubMed ID: 30942790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction.
    Kazoe Y; Ugajin T; Ohta R; Mawatari K; Kitamori T
    Lab Chip; 2019 Nov; 19(22):3844-3852. PubMed ID: 31596292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended nanofluidic immunochemical reaction with femtoliter sample volumes.
    Shirai K; Mawatari K; Kitamori T
    Small; 2014 Apr; 10(8):1514-22. PubMed ID: 24339226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection.
    Tsuyama Y; Morikawa K; Mawatari K
    Nanoscale; 2021 May; 13(19):8855-8863. PubMed ID: 33949427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtoliter droplet handling in nanofluidic channels: a Laplace nanovalve.
    Mawatari K; Kubota S; Xu Y; Priest C; Sedev R; Ralston J; Kitamori T
    Anal Chem; 2012 Dec; 84(24):10812-6. PubMed ID: 23214507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtoliter-Droplet Mass Spectrometry Interface Utilizing Nanofluidics for Ultrasmall and High-Sensitivity Analysis.
    Takagi Y; Kazoe Y; Morikawa K; Kitamori T
    Anal Chem; 2022 Jul; 94(28):10074-10081. PubMed ID: 35793145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions.
    Xu Y; Xu B
    Small; 2015 Dec; 11(46):6165-71. PubMed ID: 26485695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable fabrication of pico/femtoliter pipette sampling probes and visual sample volume determination.
    Shao Y; Zhou Y; Wu Y; Zhang Q; Yu Z; Guo G; Wang X
    Talanta; 2020 Oct; 218():121096. PubMed ID: 32797866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picoliter enzyme reactor on a nanofluidic device exceeding the bulk reaction rate.
    Yamamoto K; Morikawa K; Imanaka H; Imamura K; Kitamori T
    Analyst; 2020 Aug; 145(17):5801-5807. PubMed ID: 32692324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay.
    Sano H; Kazoe Y; Ohta R; Shimizu H; Morikawa K; Kitamori T
    Lab Chip; 2023 Feb; 23(4):727-736. PubMed ID: 36484269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonfluorescent Molecule Detection in 10
    Tsuyama Y; Mawatari K
    Anal Chem; 2019 Aug; 91(15):9741-9746. PubMed ID: 31335120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtoliter Gradient Elution System for Liquid Chromatography Utilizing Extended Nanofluidics.
    Shimizu H; Toyoda K; Mawatari K; Terabe S; Kitamori T
    Anal Chem; 2019 Feb; 91(4):3009-3014. PubMed ID: 30661360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokine analysis on a countable number of molecules from living single cells on nanofluidic devices.
    Nakao T; Kazoe Y; Mori E; Morikawa K; Fukasawa T; Yoshizaki A; Kitamori T
    Analyst; 2019 Dec; 144(24):7200-7208. PubMed ID: 31691693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local nano-electrode fabrication utilizing nanofluidic and nano-electrochemical control.
    Morikawa K; Takeuchi T; Kitamori T
    Electrophoresis; 2024 Jul; ():. PubMed ID: 38962855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single-molecule ELISA device utilizing nanofluidics.
    Shirai K; Mawatari K; Ohta R; Shimizu H; Kitamori T
    Analyst; 2018 Feb; 143(4):943-948. PubMed ID: 29364290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated protein digestion and separation with picoliter volume utilizing nanofluidics.
    Yamamoto K; Morikawa K; Shimizu H; Sano H; Kazoe Y; Kitamori T
    Lab Chip; 2022 Mar; 22(6):1162-1170. PubMed ID: 35133382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano X-ray diffractometry device for nanofluidics.
    Mawatari K; Koreeda H; Ohara K; Kohara S; Yoshida K; Yamaguchi T; Kitamori T
    Lab Chip; 2018 Apr; 18(8):1259-1264. PubMed ID: 29594269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtoliter-scale separation and sensitive detection of nonfluorescent samples in an extended-nano fluidic device.
    Shimizu H; Mawatari K; Kitamori T
    Analyst; 2014 May; 139(9):2154-7. PubMed ID: 24647438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended-nano chromatography.
    Shimizu H; Smirnova A; Mawatari K; Kitamori T
    J Chromatogr A; 2017 Mar; 1490():11-20. PubMed ID: 27623065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.