BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32049376)

  • 1. Probing the Electrostatic Barrier of Tetrathiafulvalene Dications using a Tetra-stable Donor-Acceptor [2]Rotaxane.
    Jensen M; Kristensen R; Andersen SS; Bendixen D; Jeppesen JO
    Chemistry; 2020 May; 26(28):6165-6175. PubMed ID: 32049376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies of isomeric [2]rotaxanes consisting of two different tetrathiafulvalene units reveal that the movement of cyclobis(paraquat-
    Jensen SK; Neumann MS; Frederiksen R; Skavenborg ML; Larsen MC; Wessel SE; Jeppesen JO
    Chem Sci; 2023 Nov; 14(43):12366-12378. PubMed ID: 37969595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the barrier for the movement of cyclobis(paraquat-
    Kristensen R; Neumann MS; Andersen SS; Stein PC; Flood AH; Jeppesen JO
    Org Biomol Chem; 2022 Mar; 20(11):2233-2248. PubMed ID: 35107116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally rigid bistable [2]rotaxanes.
    Nygaard S; Leung KC; Aprahamian I; Ikeda T; Saha S; Laursen BW; Kim SY; Hansen SW; Stein PC; Flood AH; Stoddart JF; Jeppesen JO
    J Am Chem Soc; 2007 Jan; 129(4):960-70. PubMed ID: 17243833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Mechanical and Experimental Validation that Cyclobis(paraquat-p-phenylene) Forms a 1:1 Inclusion Complex with Tetrathiafulvalene.
    Hartlieb KJ; Liu WG; Fahrenbach AC; Blackburn AK; Frasconi M; Hafezi N; Dey SK; Sarjeant AA; Stern CL; Goddard WA; Stoddart JF
    Chemistry; 2016 Feb; 22(8):2736-45. PubMed ID: 26784535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-controllable amphiphilic [2]rotaxanes.
    Tseng HR; Vignon SA; Celestre PC; Perkins J; Jeppesen JO; Di Fabio A; Ballardini R; Gandolfi MT; Venturi M; Balzani V; Stoddart JF
    Chemistry; 2004 Jan; 10(1):155-72. PubMed ID: 14695561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory studies of the [2]rotaxane component of the Stoddart-heath molecular switch.
    Jang YH; Hwang S; Kim YH; Jang SS; Goddard WA
    J Am Chem Soc; 2004 Oct; 126(39):12636-45. PubMed ID: 15453797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of amphiphilic bistable [2]rotaxane langmuir monolayers at the air/water interface.
    Jang SS; Jang YH; Kim YH; Goddard WA; Choi JW; Heath JR; Laursen BW; Flood AH; Stoddart JF; Nørgaard K; Bjørnholm T
    J Am Chem Soc; 2005 Oct; 127(42):14804-16. PubMed ID: 16231934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding studies between triethylene glycol-substituted monopyrrolotetrathiafulvalene derivatives and cyclobis(paraquat-p-phenylene).
    Nygaard S; Hansen CN; Jeppesen JO
    J Org Chem; 2007 Mar; 72(5):1617-26. PubMed ID: 17256990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Role of Glycol Chain Lengths in π-Donor-Acceptor [2]Pseudorotaxanes Based on Monopyrrolo-Tetrathiafulvalene and Cyclobis(paraquat-p-phenylene).
    Kristensen R; Andersen SS; Olsen G; Jeppesen JO
    J Org Chem; 2017 Feb; 82(3):1371-1379. PubMed ID: 28025881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices.
    Kim H; Goddard WA; Jang SS; Dichtel WR; Heath JR; Stoddart JF
    J Phys Chem A; 2009 Mar; 113(10):2136-43. PubMed ID: 19226131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A redox-driven multicomponent molecular shuttle.
    Saha S; Flood AH; Stoddart JF; Impellizzeri S; Silvi S; Venturi M; Credi A
    J Am Chem Soc; 2007 Oct; 129(40):12159-71. PubMed ID: 17880069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of oxidative shuttling for [2]rotaxane in a Stoddart-Heath molecular switch: density functional theory study with continuum-solvation model.
    Jang YH; Goddard WA
    J Phys Chem B; 2006 Apr; 110(15):7660-5. PubMed ID: 16610857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radically enhanced molecular switches.
    Fahrenbach AC; Zhu Z; Cao D; Liu WG; Li H; Dey SK; Basu S; Trabolsi A; Botros YY; Goddard WA; Stoddart JF
    J Am Chem Soc; 2012 Oct; 134(39):16275-88. PubMed ID: 23002805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neighboring Component Effect in a Tri-stable [2]Rotaxane.
    Wang Y; Cheng T; Sun J; Liu Z; Frasconi M; Goddard WA; Stoddart JF
    J Am Chem Soc; 2018 Oct; 140(42):13827-13834. PubMed ID: 30253106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic barriers in rotaxanes and pseudorotaxanes.
    Hmadeh M; Fahrenbach AC; Basu S; Trabolsi A; Benítez D; Li H; Albrecht-Gary AM; Elhabiri M; Stoddart JF
    Chemistry; 2011 May; 17(22):6076-87. PubMed ID: 21500290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane.
    Wu Y; Frasconi M; Liu WG; Young RM; Goddard WA; Wasielewski MR; Stoddart JF
    J Am Chem Soc; 2020 Jul; 142(27):11835-11846. PubMed ID: 32470290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-mechanical switching at the nanoparticle-solvent interface: practice and theory.
    Coskun A; Wesson PJ; Klajn R; Trabolsi A; Fang L; Olson MA; Dey SK; Grzybowski BA; Stoddart JF
    J Am Chem Soc; 2010 Mar; 132(12):4310-20. PubMed ID: 20218598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic evaluation of motion in redox-driven rotaxanes reveals longer linkers hasten forward escapes and hinder backward translations.
    Andersen SS; Share AI; Poulsen BL; Kørner M; Duedal T; Benson CR; Hansen SW; Jeppesen JO; Flood AH
    J Am Chem Soc; 2014 Apr; 136(17):6373-84. PubMed ID: 24746239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Synthesis of Nonequilibrium Systems.
    Cheng C; McGonigal PR; Stoddart JF; Astumian RD
    ACS Nano; 2015 Sep; 9(9):8672-88. PubMed ID: 26222543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.