These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32049389)

  • 1. Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition.
    Shrestha A; Hendriks KH; Sigman MS; Minteer SD; Sanford MS
    Chemistry; 2020 Apr; 26(24):5369-5373. PubMed ID: 32049389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte.
    Yan Y; Sitaula P; Odom SA; Vaid TP
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes.
    Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries.
    Turner NA; Freeman MB; Pratt HD; Crockett AE; Jones DS; Anstey MR; Anderson TM; Bejger CM
    Chem Commun (Camb); 2020 Mar; 56(18):2739-2742. PubMed ID: 32022001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New phenazine based anolyte material for high voltage organic redox flow batteries.
    Romadina EI; Komarov DS; Stevenson KJ; Troshin PA
    Chem Commun (Camb); 2021 Mar; 57(24):2986-2989. PubMed ID: 33634297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures.
    Tracy JS; Horst ES; Roytman VA; Toste FD
    Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.
    Hendriks KH; Robinson SG; Braten MN; Sevov CS; Helms BA; Sigman MS; Minteer SD; Sanford MS
    ACS Cent Sci; 2018 Feb; 4(2):189-196. PubMed ID: 29532018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric vanadium flow batteries: long lifespan via an anolyte overhang strategy.
    Mu D; Zhao Y; Yu L; Liu L; Xi J
    Phys Chem Chem Phys; 2017 Nov; 19(43):29195-29203. PubMed ID: 29067358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species.
    Gao M; Salla M; Song Y; Wang Q
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH.
    Yang L; Hao Y; Lin J; Li K; Luo S; Lei J; Han Y; Yuan R; Liu G; Ren B; Chen J
    Adv Mater; 2022 Feb; 34(7):e2107425. PubMed ID: 34866255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression.
    Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ
    ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review.
    Kwabi DG; Ji Y; Aziz MJ
    Chem Rev; 2020 Jul; 120(14):6467-6489. PubMed ID: 32053366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries.
    Yan Y; Vaid TP; Sanford MS
    J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications.
    Sevov CS; Hickey DP; Cook ME; Robinson SG; Barnett S; Minteer SD; Sigman MS; Sanford MS
    J Am Chem Soc; 2017 Mar; 139(8):2924-2927. PubMed ID: 28219237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A higher voltage Fe(ii) bipyridine complex for non-aqueous redox flow batteries.
    Cammack CX; Pratt HD; Small LJ; Anderson TM
    Dalton Trans; 2021 Jan; 50(3):858-868. PubMed ID: 33346757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery.
    Yan Y; Robinson SG; Sigman MS; Sanford MS
    J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery.
    Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.