These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 32049389)
21. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. Yan Y; Robinson SG; Sigman MS; Sanford MS J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480 [TBL] [Abstract][Full Text] [Related]
22. Controllable Carbon Felt Etching by Binary Nickel Bismuth Cluster for Vanadium-Manganese Redox Flow Batteries. Park J; Kim M; Choi J; Lee S; Han D; Bae J; Park M ACS Appl Mater Interfaces; 2023 Aug; 15(31):37390-37400. PubMed ID: 37498204 [TBL] [Abstract][Full Text] [Related]
23. A benzoquinone-imidazole hybrid organic anolyte for aqueous redox flow batteries. Murata T; Hamasaki M; Morita Y Chem Commun (Camb); 2024 Jan; 60(7):878-880. PubMed ID: 38164888 [TBL] [Abstract][Full Text] [Related]
24. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery. Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369 [TBL] [Abstract][Full Text] [Related]
25. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Hu B; Tang Y; Luo J; Grove G; Guo Y; Liu TL Chem Commun (Camb); 2018 Jun; 54(50):6871-6874. PubMed ID: 29741542 [TBL] [Abstract][Full Text] [Related]
26. Stable Operation of Aqueous Organic Redox Flow Batteries in Air Atmosphere. Kong T; Liu J; Zhou X; Xu J; Xie Y; Chen J; Li X; Wang Y Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214819. PubMed ID: 36495124 [TBL] [Abstract][Full Text] [Related]
27. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. Doris SE; Ward AL; Baskin A; Frischmann PD; Gavvalapalli N; Chénard E; Sevov CS; Prendergast D; Moore JS; Helms BA Angew Chem Int Ed Engl; 2017 Feb; 56(6):1595-1599. PubMed ID: 28071835 [TBL] [Abstract][Full Text] [Related]
28. A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. Luo J; Hu B; Debruler C; Liu TL Angew Chem Int Ed Engl; 2018 Jan; 57(1):231-235. PubMed ID: 29181865 [TBL] [Abstract][Full Text] [Related]
29. Exploring Carbonyl Chemistry in Non-aqueous Mg Flow Batteries. Qin Y; Holguin K; Fehlau D; Luo C; Gao T Chem Asian J; 2022 Nov; 17(21):e202200587. PubMed ID: 35994590 [TBL] [Abstract][Full Text] [Related]
30. An Fe Tsitovich PB; Kosswattaarachchi AM; Crawley MR; Tittiris TY; Cook TR; Morrow JR Chemistry; 2017 Nov; 23(61):15327-15331. PubMed ID: 28929548 [TBL] [Abstract][Full Text] [Related]
31. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte. Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114 [TBL] [Abstract][Full Text] [Related]
32. Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries. Tan R; Wang A; Ye C; Li J; Liu D; Darwich BP; Petit L; Fan Z; Wong T; Alvarez-Fernandez A; Furedi M; Guldin S; Breakwell CE; Klusener PAA; Kucernak AR; Jelfs KE; McKeown NB; Song Q Adv Sci (Weinh); 2023 Jul; 10(20):e2206888. PubMed ID: 37178400 [TBL] [Abstract][Full Text] [Related]
34. High-Voltage Catholyte for High-Energy-Density Nonaqueous Redox Flow Battery. McGrath J; Gautam RK; Wang X; Jiang JJ Angew Chem Int Ed Engl; 2024 Sep; 63(37):e202407906. PubMed ID: 38842475 [TBL] [Abstract][Full Text] [Related]
35. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. Hu B; DeBruler C; Rhodes Z; Liu TL J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765 [TBL] [Abstract][Full Text] [Related]
36. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte. Liu C; Shamie JS; Shaw LL; Sprenkle VL ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551 [TBL] [Abstract][Full Text] [Related]
37. Tuning Intermolecular Interactions to Enhance the Cyclability of Non-Aqueous, Organic Redox Flow Batteries. Zhang L; Liu Y; Chen Y; Zhu Y; Wang R; Dai G; Zhang X; Zhao Y Chem Asian J; 2022 Dec; 17(24):e202200901. PubMed ID: 36239205 [TBL] [Abstract][Full Text] [Related]
38. Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications. Stauber JM; Zhang S; Gvozdik N; Jiang Y; Avena L; Stevenson KJ; Cummins CC J Am Chem Soc; 2018 Jan; 140(2):538-541. PubMed ID: 29232132 [TBL] [Abstract][Full Text] [Related]
39. Development of the Squaramide Scaffold for High Potential and Multielectron Catholytes for Use in Redox Flow Batteries. Tracy JS; Broderick CH; Toste FD J Am Chem Soc; 2024 May; 146(17):11740-11755. PubMed ID: 38629752 [TBL] [Abstract][Full Text] [Related]
40. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery. Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]