These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32049478)

  • 1. Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Wang W; Watkins N; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; de Pina JM; Schaller RD; Schatz GC; Sargent EH; Odom TW
    ACS Nano; 2020 Mar; 14(3):3426-3433. PubMed ID: 32049478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Watkins NE; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; Martins de Pina J; Schaller RD; Schatz GC; Sargent EH; Odom TW
    Nano Lett; 2020 Feb; 20(2):1468-1474. PubMed ID: 32004007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation.
    Koh WK; Lee J; Cho KS; Roh YG
    Chemphyschem; 2017 Nov; 18(21):2981-2984. PubMed ID: 28861946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers.
    Winkler JM; Ruckriegel MJ; Rojo H; Keitel RC; De Leo E; Rabouw FT; Norris DJ
    ACS Nano; 2020 May; 14(5):5223-5232. PubMed ID: 32159334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow-Threshold and High-Quality Whispering-Gallery-Mode Lasing from Colloidal Core/Hybrid-Shell Quantum Wells.
    Duan R; Zhang Z; Xiao L; Zhao X; Thung YT; Ding L; Liu Z; Yang J; Ta VD; Sun H
    Adv Mater; 2022 Apr; 34(13):e2108884. PubMed ID: 34997633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonances.
    Guan J; Bourgeois MR; Li R; Hu J; Schaller RD; Schatz GC; Odom TW
    ACS Nano; 2021 Mar; 15(3):5567-5573. PubMed ID: 33689315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanoparticle Lattice Devices for White-Light Lasing.
    Guan J; Li R; Juarez XG; Sample AD; Wang Y; Schatz GC; Odom TW
    Adv Mater; 2023 Aug; 35(34):e2103262. PubMed ID: 34510573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.
    Chang H; Min K; Lee M; Kang M; Park Y; Cho KS; Roh YG; Hwang SW; Jeon H
    Nanoscale; 2016 Mar; 8(12):6571-6. PubMed ID: 26935411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.
    le Feber B; Prins F; De Leo E; Rabouw FT; Norris DJ
    Nano Lett; 2018 Feb; 18(2):1028-1034. PubMed ID: 29283266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bound State in the Continuum in Nanoantenna-Coupled Slab Waveguide Enables Low-Threshold Quantum-Dot Lasing.
    Wu M; Ding L; Sabatini RP; Sagar LK; Bappi G; Paniagua-Domínguez R; Sargent EH; Kuznetsov AI
    Nano Lett; 2021 Nov; 21(22):9754-9760. PubMed ID: 34780696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon-waveguide hybrid polymer light-emitting devices using hexagonal Ag dots.
    Cho KH; Kim JY; Choi DG; Lee KJ; Choi JH; Choi KC
    Opt Lett; 2012 Mar; 37(5):761-3. PubMed ID: 22378385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lasing Action from Quasi-Propagating Modes.
    Tan MJH; Park JE; Freire-Fernández F; Guan J; Juarez XG; Odom TW
    Adv Mater; 2022 Aug; 34(34):e2203999. PubMed ID: 35734937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purified plasmonic lasing with strong polarization selectivity by reflection.
    Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q
    Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Nanowire-Based Plasmonic Quantum Dot Laser.
    Ho J; Tatebayashi J; Sergent S; Fong CF; Ota Y; Iwamoto S; Arakawa Y
    Nano Lett; 2016 Apr; 16(4):2845-50. PubMed ID: 27030886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots.
    Kyhm K; Je KC; Taylor RA
    Opt Express; 2012 Aug; 20(18):19735-43. PubMed ID: 23037026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.