These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32050022)

  • 1. Predictive Forward Dynamic Simulation of Manual Wheelchair Propulsion on a Rolling Dynamometer.
    Brown C; McPhee J
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 32050022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fundamental model of quasi-static wheelchair biomechanics.
    Leary M; Gruijters J; Mazur M; Subic A; Burton M; Fuss FK
    Med Eng Phys; 2012 Nov; 34(9):1278-86. PubMed ID: 22763021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: part 1 - wheeling forward on a smooth level surface.
    Heinrichs ND; Kirby RL; Smith C; Russell KFJ; Theriault CJ; Doucette SP
    Disabil Rehabil Assist Technol; 2021 Nov; 16(8):831-839. PubMed ID: 32238086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 2-D model of wheelchair propulsion.
    Morrow DA; Guo LY; Zhao KD; Su FC; An KN
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):192-6. PubMed ID: 12623626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torque and power outputs on skilled and unskilled users during manual wheelchair propulsion.
    Hwang S; Kim S; Kim Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4820-2. PubMed ID: 23367006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation model of a lever-propelled wheelchair.
    Sasaki M; Ota Y; Hase K; Stefanov D; Yamaguchi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6923-6. PubMed ID: 25571588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
    Morrow MM; Rankin JW; Neptune RR; Kaufman KR
    J Biomech; 2014 Nov; 47(14):3459-65. PubMed ID: 25282075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study.
    Babu Rajendra Kurup N; Puchinger M; Gföhler M
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):55-63. PubMed ID: 30398368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The push force pattern in manual wheelchair propulsion as a balance between cost and effect.
    Rozendaal LA; Veeger HE; van der Woude LH
    J Biomech; 2003 Feb; 36(2):239-47. PubMed ID: 12547361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: part 2 - wheeling backward on a soft surface.
    Heinrichs ND; Kirby RL; Smith C; Russell KFJ; Theriault CJ; Doucette SP
    Disabil Rehabil Assist Technol; 2022 Apr; 17(3):325-330. PubMed ID: 32594783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scapular kinematic variability during wheelchair propulsion is associated with shoulder pain in wheelchair users.
    Briley SJ; Vegter RJK; Goosey-Tolfrey VL; Mason BS
    J Biomech; 2020 Dec; 113():110099. PubMed ID: 33142207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion.
    Hybois S; Puchaud P; Bourgain M; Lombart A; Bascou J; Lavaste F; Fodé P; Pillet H; Sauret C
    Med Eng Phys; 2019 Jul; 69():153-160. PubMed ID: 31221514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrist kinematic characterization of wheelchair propulsion in various seating positions: implication to wrist pain.
    Wei SH; Huang S; Jiang CJ; Chiu JC
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):S46-52. PubMed ID: 12828914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
    Bekker MJ; Vegter RJK; van der Scheer JW; Hartog J; de Groot S; de Vries W; Arnet U; van der Woude LHV; Veeger DHEJ
    Clin Biomech (Bristol, Avon); 2018 May; 54():54-61. PubMed ID: 29554550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
    Jayaraman C; Beck CL; Sosnoff JJ
    J Biomech; 2015 Nov; 48(14):3937-44. PubMed ID: 26472307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.