These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32050057)

  • 1. Single-Molecule Dye Organics with Multielectron Redox Processes as Cathode Materials for Lithium Secondary Batteries.
    Men F; Liu N; Lan Q; Zhao Y; Qin J; Song Z; Zhan H
    ChemSusChem; 2020 May; 13(9):2410-2418. PubMed ID: 32050057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability.
    Peng Z; Yi X; Liu Z; Shang J; Wang D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14578-85. PubMed ID: 27225327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries.
    Li Q; Li D; Wang H; Wang HG; Li Y; Si Z; Duan Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28801-28808. PubMed ID: 31313916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinone-Enriched Conjugated Microporous Polymer as an Organic Cathode for Li-Ion Batteries.
    Ouyang Z; Tranca D; Zhao Y; Chen Z; Fu X; Zhu J; Zhai G; Ke C; Kymakis E; Zhuang X
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9064-9073. PubMed ID: 33583175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.
    Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T
    J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Encapsulation of Small S
    Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Self-Polymerized Nitro-Substituted Conjugated Carbonyl Compound as High-Performance Cathode for Lithium-Organic Batteries.
    Li Q; Wang H; Wang HG; Si Z; Li C; Bai J
    ChemSusChem; 2020 May; 13(9):2449-2456. PubMed ID: 31867898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K
    Pramanik A; Manche AG; Sougrati MT; Chadwick AV; Lightfoot P; Armstrong AR
    Chem Mater; 2023 Mar; 35(6):2600-2611. PubMed ID: 37008407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery.
    Ma T; Zhao Q; Wang J; Pan Z; Chen J
    Angew Chem Int Ed Engl; 2016 May; 55(22):6428-32. PubMed ID: 27080745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Cathode with Dual-Type Multielectron Reaction Centers for High-Energy-Density Lithium Primary Batteries.
    Xun H; Chen Z; Liu Y; Su H; Yang J; Liu Y; Xu Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29064-29071. PubMed ID: 37293868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sufficient Utilization of Zirconium Ions to Improve the Structure and Surface properties of Nickel-Rich Cathode Materials for Lithium-Ion Batteries.
    He T; Lu Y; Su Y; Bao L; Tan J; Chen L; Zhang Q; Li W; Chen S; Wu F
    ChemSusChem; 2018 May; 11(10):1639-1648. PubMed ID: 29460416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multielectron Redox-Bipolar Tetranitroporphyrin Macrocycle Cathode for High-Performance Zinc-Organic Batteries.
    Song Z; Miao L; Duan H; Lv Y; Gan L; Liu M
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202401049. PubMed ID: 38372434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Insoluble Anthraquinone Dimer with Near-Plane Structure as a Cathode Material for Lithium-Ion Batteries.
    Yang J; Su H; Wang Z; Sun P; Xu Y
    ChemSusChem; 2020 May; 13(9):2436-2442. PubMed ID: 31840438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries.
    Deng W; Shen Y; Qian J; Cao Y; Yang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Honeycomb-Like Nitrogen-Doped Carbon 3D Nanoweb@Li
    Kim Y; Han H; Noh Y; Bae J; Ham MH; Kim WB
    ChemSusChem; 2019 Feb; 12(4):824-829. PubMed ID: 30569512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries.
    Wang Z; Fan Q; Guo W; Yang C; Fu Y
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103632. PubMed ID: 34716685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.
    Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N
    Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination Polymers for High-Capacity Li-Ion Batteries: Metal-Dependent Solid-State Reversibility.
    Lee HH; Lee JB; Park Y; Park KH; Okyay MS; Shin DS; Kim S; Park J; Park N; An BK; Jung YS; Lee HW; Lee KT; Hong SY
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22110-22118. PubMed ID: 29901390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing Extended π-Conjugated Molecules with
    Chen Z; Wang J; Cai T; Hu Z; Chu J; Wang F; Gan X; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27994-28003. PubMed ID: 35695375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.