These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32050065)
1. Phosphorylation of a Disordered Peptide-Structural Effects and Force Field Inconsistencies. Rieloff E; Skepö M J Chem Theory Comput; 2020 Mar; 16(3):1924-1935. PubMed ID: 32050065 [TBL] [Abstract][Full Text] [Related]
2. Molecular Dynamics Simulations of Phosphorylated Intrinsically Disordered Proteins: A Force Field Comparison. Rieloff E; Skepö M Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576338 [TBL] [Abstract][Full Text] [Related]
3. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations. Watts CR; Gregory A; Frisbie C; Lovas S Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155 [TBL] [Abstract][Full Text] [Related]
4. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles. Chan-Yao-Chong M; Durand D; Ha-Duong T J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442 [TBL] [Abstract][Full Text] [Related]
5. Conformational Preferences of an Intrinsically Disordered Protein Domain: A Case Study for Modern Force Fields. Gopal SM; Wingbermühle S; Schnatwinkel J; Juber S; Herrmann C; Schäfer LV J Phys Chem B; 2021 Jan; 125(1):24-35. PubMed ID: 33382616 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of the adsorption of an intrinsically disordered protein: Force field and water model evaluation in comparison with experiments. Koder Hamid M; Månsson LK; Meklesh V; Persson P; Skepö M Front Mol Biosci; 2022; 9():958175. PubMed ID: 36387274 [TBL] [Abstract][Full Text] [Related]
7. How multisite phosphorylation impacts the conformations of intrinsically disordered proteins. Jin F; Gräter F PLoS Comput Biol; 2021 May; 17(5):e1008939. PubMed ID: 33945530 [TBL] [Abstract][Full Text] [Related]
8. Intrinsically disordered protein-specific force field CHARMM36IDPSFF. Liu H; Song D; Lu H; Luo R; Chen HF Chem Biol Drug Des; 2018 Oct; 92(4):1722-1735. PubMed ID: 29808548 [TBL] [Abstract][Full Text] [Related]
9. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields. Chen W; Shi C; MacKerell AD; Shen J J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564 [TBL] [Abstract][Full Text] [Related]
10. Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment. Rauscher S; Gapsys V; Gajda MJ; Zweckstetter M; de Groot BL; Grubmüller H J Chem Theory Comput; 2015 Nov; 11(11):5513-24. PubMed ID: 26574339 [TBL] [Abstract][Full Text] [Related]
11. On the Calculation of SAXS Profiles of Folded and Intrinsically Disordered Proteins from Computer Simulations. Henriques J; Arleth L; Lindorff-Larsen K; Skepö M J Mol Biol; 2018 Aug; 430(16):2521-2539. PubMed ID: 29548755 [TBL] [Abstract][Full Text] [Related]
12. How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β Weber OC; Uversky VN Intrinsically Disord Proteins; 2017; 5(1):e1377813. PubMed ID: 30250773 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the structural ensembles of p53 TAD2 by molecular dynamics simulations with different force fields. Ouyang Y; Zhao L; Zhang Z Phys Chem Chem Phys; 2018 Mar; 20(13):8676-8684. PubMed ID: 29537020 [TBL] [Abstract][Full Text] [Related]
14. Structural Characterization of N-WASP Domain V Using MD Simulations with NMR and SAXS Data. Chan-Yao-Chong M; Deville C; Pinet L; van Heijenoort C; Durand D; Ha-Duong T Biophys J; 2019 Apr; 116(7):1216-1227. PubMed ID: 30878202 [TBL] [Abstract][Full Text] [Related]
15. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos. Xue Y; Yuwen T; Zhu F; Skrynnikov NR Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671 [TBL] [Abstract][Full Text] [Related]
16. SAXS-Restrained Ensemble Simulations of Intrinsically Disordered Proteins with Commitment to the Principle of Maximum Entropy. Hermann MR; Hub JS J Chem Theory Comput; 2019 Sep; 15(9):5103-5115. PubMed ID: 31402649 [TBL] [Abstract][Full Text] [Related]
17. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment. Henriques J; Cragnell C; Skepö M J Chem Theory Comput; 2015 Jul; 11(7):3420-31. PubMed ID: 26575776 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. Cino EA; Choy WY; Karttunen M J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695 [TBL] [Abstract][Full Text] [Related]
19. Systematic Differences between Current Molecular Dynamics Force Fields To Represent Local Properties of Intrinsically Disordered Proteins. Yu L; Li DW; Brüschweiler R J Phys Chem B; 2021 Jan; 125(3):798-804. PubMed ID: 33444020 [TBL] [Abstract][Full Text] [Related]
20. Comparison and Evaluation of Force Fields for Intrinsically Disordered Proteins. Rahman MU; Rehman AU; Liu H; Chen HF J Chem Inf Model; 2020 Oct; 60(10):4912-4923. PubMed ID: 32816485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]