These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3205015)

  • 41. Measurements of common femoral artery flow velocity in the evaluation of aortoiliac atherosclerosis. Comparisons between pulsatility index, pressures measurements and pulse-volume recordings.
    Jørgensen JJ; Stranden E; Gjølberg T
    Acta Chir Scand; 1988 Apr; 154(4):261-6. PubMed ID: 2967613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical simulation of blood flow in an artery with two successive bends.
    Hoogstraten HW; Kootstra JG; Hillen B; Krijger JK; Wensing PJ
    J Biomech; 1996 Aug; 29(8):1075-83. PubMed ID: 8817375
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of Hemodynamics in a Prestressed and Compliant Tapered Femoral Artery Using an Optimization-Based Inverse Algorithm.
    Banerjee RK; D'Souza GA; Paul AK; Das A
    J Biomech Eng; 2017 Apr; 139(4):. PubMed ID: 28231351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vortex generation in pulsatile flow through arterial bifurcation models including the human carotid artery.
    Fukushima T; Homma T; Harakawa K; Sakata N; Azuma T
    J Biomech Eng; 1988 Aug; 110(3):166-71. PubMed ID: 3172734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physiological flow analysis in significant human coronary artery stenoses.
    Banerjee RK; Back LH; Back MR; Cho YI
    Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study.
    Fei DY; Thomas JD; Rittgers SE
    J Biomech Eng; 1994 Aug; 116(3):331-6. PubMed ID: 7799636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geometric design improvements for femoral graft-artery junctions mitigating restenosis.
    Lei M; Kleinstreuer C; Archie JP
    J Biomech; 1996 Dec; 29(12):1605-14. PubMed ID: 8945659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions.
    Moore JE; Ku DN
    J Biomech Eng; 1994 Aug; 116(3):337-46. PubMed ID: 7799637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pulsatile spiral blood flow through arterial stenosis.
    Linge F; Hye MA; Paul MC
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1727-37. PubMed ID: 23477498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigation of the effects of dynamic change in curvature and torsion on pulsatile flow in a helical tube.
    Selvarasu NK; Tafti DK
    J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763627
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An experimental study of pulsatile pipe flow in the transition range.
    Einav S; Sokolov M
    J Biomech Eng; 1993 Nov; 115(4A):404-11. PubMed ID: 8309235
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.
    Weddell JC; Kwack J; Imoukhuede PI; Masud A
    PLoS One; 2015; 10(4):e0124575. PubMed ID: 25897758
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wall shear stress and near-wall flows in the stenosed femoral artery.
    Barber T
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1048-1055. PubMed ID: 28540762
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Apparent stresses in disturbed pulsatile flows.
    Lieber BB; Giddens DP
    J Biomech; 1988; 21(4):287-98. PubMed ID: 3384826
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.
    Ghalichi F; Deng X
    Biorheology; 2003; 40(6):637-54. PubMed ID: 14610313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.