These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 32050372)
1. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. Johnston SG; Bennett WW; Doriean N; Hockmann K; Karimian N; Burton ED Sci Total Environ; 2020 Mar; 710():136354. PubMed ID: 32050372 [TBL] [Abstract][Full Text] [Related]
2. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
3. Diffusive Gradients in Thin Films Reveals Differences in Antimony and Arsenic Mobility in a Contaminated Wetland Sediment during an Oxic-Anoxic Transition. Arsic M; Teasdale PR; Welsh DT; Johnston SG; Burton ED; Hockmann K; Bennett WW Environ Sci Technol; 2018 Feb; 52(3):1118-1127. PubMed ID: 29303570 [TBL] [Abstract][Full Text] [Related]
4. Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation. Karimian N; Burton ED; Johnston SG; Hockmann K; Choppala G Sci Total Environ; 2019 Sep; 683():399-410. PubMed ID: 31141743 [TBL] [Abstract][Full Text] [Related]
5. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
6. Antimony and arsenic particle size distribution in a mining contaminated freshwater river: Implications for sediment quality assessment and quantifying dispersion. Doherty S; Rueegsegger I; Tighe MK; Milan LA; Wilson SC Environ Pollut; 2022 Jul; 305():119204. PubMed ID: 35395352 [TBL] [Abstract][Full Text] [Related]
7. Distribution and migration of antimony and other trace elements in a Karstic river system, Southwest China. Li L; Liu H; Li H Environ Sci Pollut Res Int; 2018 Oct; 25(28):28061-28074. PubMed ID: 30066079 [TBL] [Abstract][Full Text] [Related]
8. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite. Karimian N; Johnston SG; Burton ED Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133 [TBL] [Abstract][Full Text] [Related]
9. Fate of Sb(V) and Sb(III) species along a gradient of pH and oxygen concentration in the Carnoulès mine waters (Southern France). Resongles E; Casiot C; Elbaz-Poulichet F; Freydier R; Bruneel O; Piot C; Delpoux S; Volant A; Desoeuvre A Environ Sci Process Impacts; 2013 Aug; 15(8):1536-44. PubMed ID: 23793399 [TBL] [Abstract][Full Text] [Related]
10. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
11. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens. Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045 [TBL] [Abstract][Full Text] [Related]
12. Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation. Hockmann K; Karimian N; Schlagenhauff S; Planer-Friedrich B; Burton ED Environ Sci Technol; 2021 Apr; 55(8):4954-4963. PubMed ID: 33710876 [TBL] [Abstract][Full Text] [Related]
13. Reduction of Sb(V) by coupled biotic-abiotic processes under sulfidogenic conditions. Johnson CR; Antonopoulos DA; Boyanov MI; Flynn TM; Koval JC; Kemner KM; O'Loughlin EJ Heliyon; 2021 Feb; 7(2):e06275. PubMed ID: 33681496 [TBL] [Abstract][Full Text] [Related]
14. Relevance of the microbial community to Sb and As biogeochemical cycling in natural wetlands. Deng J; Xiao T; Fan W; Ning Z; Xiao E Sci Total Environ; 2022 Apr; 818():151826. PubMed ID: 34822895 [TBL] [Abstract][Full Text] [Related]
15. Antimony and arsenic partitioning during Fe Karimian N; Johnston SG; Burton ED Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031 [TBL] [Abstract][Full Text] [Related]
16. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Casiot C; Lebrun S; Morin G; Bruneel O; Personné JC; Elbaz-Poulichet F Sci Total Environ; 2005 Jul; 347(1-3):122-30. PubMed ID: 16084973 [TBL] [Abstract][Full Text] [Related]
17. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Resongles E; Casiot C; Freydier R; Dezileau L; Viers J; Elbaz-Poulichet F Sci Total Environ; 2014 May; 481():509-21. PubMed ID: 24631614 [TBL] [Abstract][Full Text] [Related]
18. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
19. Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies. Chen C; Kukkadapu RK; Lazareva O; Sparks DL Environ Sci Technol; 2017 Jul; 51(14):7903-7912. PubMed ID: 28617593 [TBL] [Abstract][Full Text] [Related]
20. Oxidation and incorporation of adsorbed antimonite during iron(II)-catalyzed recrystallization of ferrihydrite. Yin X; Zhang G; Su R; Zeng X; Yan Z; Zhang D; Ma X; Lei L; Lin J; Wang S; Jia Y Sci Total Environ; 2021 Jul; 778():146424. PubMed ID: 34030383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]