These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32050382)

  • 21. Highly efficient removal of cadmium from aqueous solution by ammonium polyphosphate-modified biochar.
    Huang K; Hu C; Tan Q; Yu M; Shabala S; Yang L; Sun X
    Chemosphere; 2022 Oct; 305():135471. PubMed ID: 35764111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorus sorption capacity of biochars varies with biochar type and salinity level.
    Dugdug AA; Chang SX; Ok YS; Rajapaksha AU; Anyia A
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25799-25812. PubMed ID: 29429110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars.
    Liu P; Rao D; Zou L; Teng Y; Yu H
    Sci Total Environ; 2021 May; 767():145447. PubMed ID: 33636789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms.
    Teng D; Zhang B; Xu G; Wang B; Mao K; Wang J; Sun J; Feng X; Yang Z; Zhang H
    Environ Pollut; 2020 Oct; 265(Pt A):115001. PubMed ID: 32563143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative contribution of Cd
    Huang F; Gao LY; Deng JH; Chen SH; Cai KZ
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28322-28334. PubMed ID: 30083897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II).
    Xiao J; Hu R; Chen G
    J Hazard Mater; 2020 Apr; 387():121980. PubMed ID: 31927255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient removal of Cd (II) from aqueous solution by chitosan modified kiwi branch biochar.
    Tan Y; Wan X; Ni X; Wang L; Zhou T; Sun H; Wang N; Yin X
    Chemosphere; 2022 Feb; 289():133251. PubMed ID: 34896419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution.
    Khan ZH; Gao M; Qiu W; Song Z
    Chemosphere; 2020 Sep; 255():126995. PubMed ID: 32416394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Initial biochar properties related to the removal of As, Se, Pb, Cd, Cu, Ni, and Zn from an acidic suspension.
    Clemente JS; Beauchemin S; MacKinnon T; Martin J; Johnston CT; Joern B
    Chemosphere; 2017 Mar; 170():216-224. PubMed ID: 28006756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Characteristics and Mechanism of Copper Adsorption from Aqueous Solutions on Biochar Produced from Sawdust and Apple Branch].
    Wang TT; Ma JB; Qu D; Zhang XY; Zheng JY; Zhang XC
    Huan Jing Ke Xue; 2017 May; 38(5):2161-2171. PubMed ID: 29965125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu
    Choudhary M; Kumar R; Neogi S
    J Hazard Mater; 2020 Jun; 392():122441. PubMed ID: 32193109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the adsorption behavior and the relative distribution of Cd
    Wang RZ; Huang DL; Liu YG; Zhang C; Lai C; Zeng GM; Cheng M; Gong XM; Wan J; Luo H
    Bioresour Technol; 2018 Aug; 261():265-271. PubMed ID: 29673995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of competitive adsorption with Ni(II) and Cu(II) on the adsorption of Cd(II) by modified biochar co-aged with acidic soil.
    Meng Z; Xu T; Huang S; Ge H; Mu W; Lin Z
    Chemosphere; 2022 Apr; 293():133621. PubMed ID: 35033512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino-functionalized sewage sludge-derived biochar as sustainable efficient adsorbent for Cu(II) removal.
    Tang S; Shao N; Zheng C; Yan F; Zhang Z
    Waste Manag; 2019 May; 90():17-28. PubMed ID: 31088670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of Monovalent and Divalent Ions Removal from Aqueous Solutions Using Agricultural Waste Biochars Prepared at Different Temperatures-Experimental and Model Study.
    Tomczyk A; Sokołowska Z; Boguta P; Szewczuk-Karpisz K
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorptive behaviour of palm oil mill sludge biochar pyrolyzed at low temperature for copper and cadmium removal.
    Goh CL; Sethupathi S; Bashir MJ; Ahmed W
    J Environ Manage; 2019 May; 237():281-288. PubMed ID: 30802752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization of Cu
    Wang Z; Shen F; Shen D; Jiang Y; Xiao R
    J Environ Sci (China); 2017 Mar; 53():293-300. PubMed ID: 28372755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution.
    Jin Y; Zhang M; Jin Z; Wang G; Li R; Zhang X; Liu X; Qu J; Wang H
    Environ Res; 2021 May; 196():110323. PubMed ID: 33098819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar.
    Tran HN; You SJ; Chao HP
    Waste Manag Res; 2016 Feb; 34(2):129-38. PubMed ID: 26608900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of ciprofloxacin and Cu
    Yang Z; Xing R; Zhou W
    Environ Sci Pollut Res Int; 2019 May; 26(14):14382-14392. PubMed ID: 30868459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.