BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32050463)

  • 1. In Vitro Hypocholesterolemic Effect of Coffee Compounds.
    Coreta-Gomes FM; Lopes GR; Passos CP; Vaz IM; Machado F; Geraldes CFGC; Moreno MJ; Nyström L; Coimbra MA
    Nutrients; 2020 Feb; 12(2):. PubMed ID: 32050463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polysaccharide Structures and Their Hypocholesterolemic Potential.
    Silva IMV; Machado F; Moreno MJ; Nunes C; Coimbra MA; Coreta-Gomes F
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Coffee on the Bioavailability of Sterols.
    Pires CL; Silva IMV; Coimbra MA; Moreno MJ; Coreta-Gomes F
    Foods; 2022 Sep; 11(19):. PubMed ID: 36230011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrates as targeting compounds to produce infusions resembling espresso coffee brews using quality by design approach.
    Lopes GR; Passos CP; Petronilho S; Rodrigues C; Teixeira JA; Coimbra MA
    Food Chem; 2021 May; 344():128613. PubMed ID: 33243561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical characterization of the high molecular weight material extracted with hot water from green and roasted arabica coffee.
    Nunes FM; Coimbra MA
    J Agric Food Chem; 2001 Apr; 49(4):1773-82. PubMed ID: 11308325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Cholesterol Solubilized in Dietary Micelles: Dependence on Human Bile Salt Variability and the Presence of Dietary Food Ingredients.
    Coreta-Gomes FM; Vaz WL; Wasielewski E; Geraldes CF; Moreno MJ
    Langmuir; 2016 May; 32(18):4564-74. PubMed ID: 27079626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of non-ionic interactions on bile salt sequestration by chitooligosaccharides: Potential hypocholesterolemic activity.
    Coreta-Gomes F; Silva IMV; Nunes C; Marin-Montesinos I; Evtuguin D; Geraldes CFGC; João Moreno M; Coimbra MA
    J Colloid Interface Sci; 2023 Sep; 646():775-783. PubMed ID: 37229995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical characterization of the high-molecular-weight material extracted with hot water from green and roasted robusta coffees as affected by the degree of roast.
    Nunes FM; Coimbra MA
    J Agric Food Chem; 2002 Nov; 50(24):7046-52. PubMed ID: 12428958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave superheated water extraction of polysaccharides from spent coffee grounds.
    Passos CP; Coimbra MA
    Carbohydr Polym; 2013 Apr; 94(1):626-33. PubMed ID: 23544583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting intestinal absorption of cholesterol and plant sterols and stanols.
    Ikeda I
    J Oleo Sci; 2015; 64(1):9-18. PubMed ID: 25742922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polysaccharides of green Arabica and Robusta coffee beans.
    Fischer M; Reimann S; Trovato V; Redgwell RJ
    Carbohydr Res; 2001 Jan; 330(1):93-101. PubMed ID: 11217967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal stability of spent coffee ground polysaccharides: galactomannans and arabinogalactans.
    Simões J; Maricato E; Nunes FM; Domingues MR; Coimbra MA
    Carbohydr Polym; 2014 Jan; 101():256-64. PubMed ID: 24299772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical characterization of galactomannans and arabinogalactans from two arabica coffee infusions as affected by the degree of roast.
    Nunes FM; Coimbra MA
    J Agric Food Chem; 2002 Mar; 50(6):1429-34. PubMed ID: 11879015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coffee dietary fiber contents and structural characteristics as influenced by coffee type and technological and brewing procedures.
    Gniechwitz D; Brueckel B; Reichardt N; Blaut M; Steinhart H; Bunzel M
    J Agric Food Chem; 2007 Dec; 55(26):11027-34. PubMed ID: 18052037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lowering of cholesterol bioaccessibility and serum concentrations by saponins: in vitro and in vivo studies.
    Vinarova L; Vinarov Z; Atanasov V; Pantcheva I; Tcholakova S; Denkov N; Stoyanov S
    Food Funct; 2015 Feb; 6(2):501-12. PubMed ID: 25479247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Espresso coffee residues: a valuable source of unextracted compounds.
    Cruz R; Cardoso MM; Fernandes L; Oliveira M; Mendes E; Baptista P; Morais S; Casal S
    J Agric Food Chem; 2012 Aug; 60(32):7777-84. PubMed ID: 22812683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid content and composition of coffee brews prepared by different methods.
    Ratnayake WM; Hollywood R; O'Grady E; Stavric B
    Food Chem Toxicol; 1993 Apr; 31(4):263-9. PubMed ID: 8477916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary fiber in brewed coffee.
    Díaz-Rubio ME; Saura-Calixto F
    J Agric Food Chem; 2007 Mar; 55(5):1999-2003. PubMed ID: 17295507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serum cholesterol reduction by feeding a high-cholesterol diet containing a lower-molecular-weight polyphenol fraction from peanut skin.
    Tamura T; Inoue N; Shimizu-Ibuka A; Tadaishi M; Takita T; Arai S; Mura K
    Biosci Biotechnol Biochem; 2012; 76(4):834-7. PubMed ID: 22484944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of molecular interactions between hydrophilic phytosterol glycosyl derivatives and bile salts on the micellar solubility of cholesterol.
    Hu Y; Ma C; Yang R; Guo S; Wang T; Liu J
    Food Res Int; 2023 May; 167():112642. PubMed ID: 37087234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.