These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32050558)

  • 1. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond.
    Larouche F; Tedjar F; Amouzegar K; Houlachi G; Bouchard P; Demopoulos GP; Zaghib K
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives.
    Hantanasirisakul K; Sawangphruk M
    Glob Chall; 2023 Apr; 7(4):2200212. PubMed ID: 37020621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid.
    Vieceli N; Casasola R; Lombardo G; Ebin B; Petranikova M
    Waste Manag; 2021 Apr; 125():192-203. PubMed ID: 33706256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling.
    Wu X; Ma J; Wang J; Zhang X; Zhou G; Liang Z
    Glob Chall; 2022 Dec; 6(12):2200067. PubMed ID: 36532240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathode active materials using rare metals recovered from waste lithium-ion batteries: A review.
    Abe Y; Watanabe R; Yodose T; Kumagai S
    Heliyon; 2024 Apr; 10(7):e28145. PubMed ID: 38560163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of lithium-ion batteries' supply-chain in Europe: Material flow analysis and environmental assessment.
    Bruno M; Fiore S
    J Environ Manage; 2024 May; 358():120758. PubMed ID: 38593735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies.
    Windisch-Kern S; Gerold E; Nigl T; Jandric A; Altendorfer M; Rutrecht B; Scherhaufer S; Raupenstrauch H; Pomberger R; Antrekowitsch H; Part F
    Waste Manag; 2022 Feb; 138():125-139. PubMed ID: 34875455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct recycling of spent Li-ion batteries: Challenges and opportunities toward practical applications.
    Wei G; Liu Y; Jiao B; Chang N; Wu M; Liu G; Lin X; Weng X; Chen J; Zhang L; Zhu C; Wang G; Xu P; Di J; Li Q
    iScience; 2023 Sep; 26(9):107676. PubMed ID: 37680490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling.
    Bhattacharyya S; Roy S; Vajtai R
    Small; 2024 Jun; ():e2400557. PubMed ID: 38922789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Electrochemical Leaching Method for High-Purity Lithium Recovery from Spent Lithium Batteries.
    Yang L; Gao Z; Liu T; Huang M; Liu G; Feng Y; Shao P; Luo X
    Environ Sci Technol; 2023 Mar; 57(11):4591-4597. PubMed ID: 36881640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on spent Mn-containing Li-ion batteries: Recovery technologies, challenges, and future perspectives.
    Guo M; Zhang B; Gao M; Deng R; Zhang Q
    J Environ Manage; 2024 Mar; 354():120454. PubMed ID: 38412733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Sustainable All Solid-State Li-Metal Batteries: Perspectives on Battery Technology and Recycling Processes.
    Wu X; Ji G; Wang J; Zhou G; Liang Z
    Adv Mater; 2023 Dec; 35(51):e2301540. PubMed ID: 37191036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite.
    Vieceli N; Nogueira CA; Guimarães C; Pereira MFC; Durão FO; Margarido F
    Waste Manag; 2018 Jan; 71():350-361. PubMed ID: 29030120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells.
    Sobianowska-Turek A
    Waste Manag; 2018 Jul; 77():213-219. PubMed ID: 29655922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.