These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32050619)

  • 21. Portable LiDAR-Based Method for Improvement of Grass Height Measurement Accuracy: Comparison with SfM Methods.
    Obanawa H; Yoshitoshi R; Watanabe N; Sakanoue S
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32858888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a multispectral fluorescence LiDAR for point cloud segmentation of plants.
    Zheng K; Lin H; Hong X; Che H; Ma X; Wei X; Mei L
    Opt Express; 2023 May; 31(11):18613-18629. PubMed ID: 37381570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A LiDAR Point Cloud Data-Based Method for Evaluating Strain on a Curved Steel Plate Subjected to Lateral Pressure.
    Jo HC; Sohn HG; Lim YM
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Ordinal Classification in Forest Areas Using Light Detection and Ranging Point Clouds.
    Morales-Martín A; Mesas-Carrascosa FJ; Gutiérrez PA; Pérez-Porras FJ; Vargas VM; Hervás-Martínez C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initial experimental multi-wavelength EEM (Excitation Emission Matrix) fluorescence lidar detection and classification of atmospheric pollen with potential applications toward real-time bioaerosols monitoring.
    Saito Y; Kawai K
    Opt Express; 2022 May; 30(11):19922-19929. PubMed ID: 36221755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network.
    Zhang L; Sun J; Zheng Q
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using a multiwavelength LiDAR for improved remote sensing of natural waters.
    Gray DJ; Anderson J; Nelson J; Edwards J
    Appl Opt; 2015 Nov; 54(31):F232-42. PubMed ID: 26560612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.
    Qin H; Wang C; Zhao K; Xi X
    PLoS One; 2018; 13(5):e0197510. PubMed ID: 29813094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methodological considerations of terrestrial laser scanning for vegetation monitoring in the sagebrush steppe.
    Anderson KE; Glenn NF; Spaete LP; Shinneman DJ; Pilliod DS; Arkle RS; McIlroy SK; Derryberry DR
    Environ Monit Assess; 2017 Oct; 189(11):578. PubMed ID: 29063247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wavelength selection of dual-mechanism LiDAR with reflection and fluorescence spectra for plant detection.
    Chen B; Shi S; Gong W; Xu Q; Tang X; Bi S; Chen B
    Opt Express; 2023 Jan; 31(3):3660-3675. PubMed ID: 36785353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of airborne 3D point clouds regarding separation of vegetation in complex environments.
    Bulatov D; Stütz D; Hacker J; Weinmann M
    Appl Opt; 2021 Aug; 60(22):F6-F20. PubMed ID: 34612858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The application of time decay characteristics of laser-induced fluorescence in the classification of vegetation.
    Gong W; Yang J; Shi S; Du L; Sun J; Song S
    Luminescence; 2017 Feb; 32(1):17-21. PubMed ID: 27125908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smartphone-Based Light Detection and Ranging for Remote Patient Evaluation and Monitoring.
    Bhandarkar AR; Bhandarkar S; Jarrah RM; Rosenman D; Bydon M
    Cureus; 2021 Aug; 13(8):e16886. PubMed ID: 34513461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multispectral LiDAR Data for Land Cover Classification of Urban Areas.
    Morsy S; Shaker A; El-Rabbany A
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28445432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents.
    Li W; Niu Z; Sun G; Gao S; Wu M
    Opt Express; 2016 Mar; 24(5):4771-4785. PubMed ID: 29092306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review of Research and Application for Vegetation BRDF.
    Zhang XZ; Du PP; He Y; Fang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):829-35. PubMed ID: 30160390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in animal ecology from 3D-LiDAR ecosystem mapping.
    Davies AB; Asner GP
    Trends Ecol Evol; 2014 Dec; 29(12):681-91. PubMed ID: 25457158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification.
    Gong W; Sun J; Shi S; Yang J; Du L; Zhu B; Song S
    Sensors (Basel); 2015 Sep; 15(9):21989-2002. PubMed ID: 26340630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data.
    Loicq P; Moatar F; Jullian Y; Dugdale SJ; Hannah DM
    Sci Total Environ; 2018 May; 624():480-490. PubMed ID: 29268220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retrieval of water cloud properties from carbon dioxide lidar soundings.
    Piatt CM; Takashima T
    Appl Opt; 1987 Apr; 26(7):1257-63. PubMed ID: 20454313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.