These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 32050667)

  • 1. Determination of the Real Cracking Moment of Two Reinforced Concrete Beams Through the Use of Embedded Fiber Optic Sensors.
    García Díaz J; Navarro Cano N; Rúa Álvarez E
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.
    Zhao X; Gong P; Qiao G; Lu J; Lv X; Ou J
    Sensors (Basel); 2011; 11(11):10798-819. PubMed ID: 22346672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures-A Case Study.
    Barrias A; Casas JR; Villalba S
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29587449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bending Performance of Steel Fiber Reinforced Concrete Beams Based on Composite-Recycled Aggregate and Matched with 500 MPa Rebars.
    Li X; Pei S; Fan K; Geng H; Li F
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.
    Montanini R; Recupero A; De Domenico F; Freni F
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27669251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Measurement and Damage Detection in Concrete Beams Exposed to Fire Using PPP-BOTDA Based Fiber Optic Sensors.
    Bao Y; Hoehler MS; Smith CM; Bundy M; Chen G
    Smart Mater Struct; 2017 Oct; 26(10):. PubMed ID: 29230083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term Performance of Distributed Optical Fiber Sensors Embedded in Reinforced Concrete Beams under Sustained Deflection and Cyclic Loading.
    Fernandez I; Berrocal CG; Rempling R
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Steel Fiber Content on Shear Behavior of Reinforced Expanded-Shale Lightweight Concrete Beams with Stirrups.
    Li C; Zhao M; Zhang X; Li J; Li X; Zhao M
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33653011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Combined Positioning Method Used for Identification of Concrete Cracks.
    Li J; Shen B; Wang J
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction Condition and Damage Monitoring of Post-Tensioned PSC Girders Using Embedded Sensors.
    Shin KJ; Lee SC; Kim YY; Kim JM; Park S; Lee H
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28796156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexural Fatigue Performance of Steel Fiber Reinforced Expanded-Shales Lightweight Concrete Superposed Beams with Initial Static-Load Cracks.
    Qu F; Li C; Peng C; Ding X; Hu X; Pan L
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31590456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Challenges and Advantages of Distributed Fiber Optic Strain Monitoring in and on the Cementitious Matrix of Concrete Beams.
    Weisbrich M; Messerer D; Holschemacher K
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.
    Mao J; Xu F; Gao Q; Liu S; Jin W; Xu Y
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27428972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed Fiber-Optic Strain Sensing of an Innovative Reinforced Concrete Beam-Column Connection.
    Zhang S; Liu H; Darwish E; Mosalam KM; DeJong MJ
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Improvement of a Fiber-Reinforced Polymer Bar for a Reinforced Sea Sand and Seawater Concrete Beam in the Serviceability Limit State.
    Jiang J; Luo J; Yu J; Wang Z
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30764573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Polymer Composite Deck Monitoring Using Distributed High Definition and Bragg Grating Fiber Optic Sensing.
    Young S; Penumadu D; Patchen AD; Laggis G; Michaud J; Bradley A; Davis R; Unser J; Davis M
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moment Redistribution in Continuous Externally CFRP Prestressed Beams with Steel and FRP Rebars.
    Lou T; Li Z; Pang M
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33916977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Steel and Basalt Fibers on the Shear Behavior of Double-Span Fiber Reinforced Concrete Beams.
    Krassowska J; Kosior-Kazberuk M
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate measurement of the bond stress between rebar and concrete in reinforced concrete using FBG sensing technology.
    Ahmed M; Matsumoto Y; Yoon R; Takahashi S; Sanada Y
    Sci Rep; 2024 Jan; 14(1):2119. PubMed ID: 38267520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaled Approach to Designing the Minimum Hybrid Reinforcement of Concrete Beams.
    Gorino A; Fantilli AP
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.