BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1363 related articles for article (PubMed ID: 32051325)

  • 1. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endbulb synaptic depression within the range of presynaptic spontaneous firing and its impact on the firing reliability of cochlear nucleus bushy neurons.
    Wang Y; Ren C; Manis PB
    Hear Res; 2010 Dec; 270(1-2):101-9. PubMed ID: 20850512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative roles of different mechanisms of depression at the mouse endbulb of Held.
    Yang H; Xu-Friedman MA
    J Neurophysiol; 2008 May; 99(5):2510-21. PubMed ID: 18367696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice.
    Wang Y; Manis PB
    J Neurophysiol; 2008 Sep; 100(3):1255-64. PubMed ID: 18632895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired auditory processing and altered structure of the endbulb of Held synapse in mice lacking the GluA3 subunit of AMPA receptors.
    García-Hernández S; Abe M; Sakimura K; Rubio ME
    Hear Res; 2017 Feb; 344():284-294. PubMed ID: 28011083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus.
    Clarkson C; Antunes FM; Rubio ME
    J Neurosci; 2016 Sep; 36(39):10214-27. PubMed ID: 27683915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice.
    Wang Y; Manis PB
    J Neurophysiol; 2005 Sep; 94(3):1814-24. PubMed ID: 15901757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus.
    Pliss L; Yang H; Xu-Friedman MA
    J Neurophysiol; 2009 Nov; 102(5):2627-37. PubMed ID: 19726731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RIM-Binding Protein 2 Organizes Ca
    Butola T; Alvanos T; Hintze A; Koppensteiner P; Kleindienst D; Shigemoto R; Wichmann C; Moser T
    J Neurosci; 2021 Sep; 41(37):7742-7767. PubMed ID: 34353898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic Diversity Revealed by Ca
    Lujan B; Dagostin A; von Gersdorff H
    J Neurosci; 2019 Apr; 39(16):2981-2994. PubMed ID: 30679394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic plasticity at two giant auditory synapses in normal and deaf mice.
    Oleskevich S; Youssoufian M; Walmsley B
    J Physiol; 2004 Nov; 560(Pt 3):709-19. PubMed ID: 15331689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus.
    Brenowitz S; Trussell LO
    J Neurosci; 2001 Dec; 21(23):9487-98. PubMed ID: 11717383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells.
    Rubio ME; Matsui K; Fukazawa Y; Kamasawa N; Harada H; Itakura M; Molnár E; Abe M; Sakimura K; Shigemoto R
    Brain Struct Funct; 2017 Nov; 222(8):3375-3393. PubMed ID: 28397107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms and Functional Consequences of Presynaptic Homeostatic Plasticity at Auditory Nerve Synapses.
    Zhuang X; Wong NF; Sun W; Xu-Friedman MA
    J Neurosci; 2020 Sep; 40(36):6896-6909. PubMed ID: 32747441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GluA3 subunits are required for appropriate assembly of AMPAR GluA2 and GluA4 subunits on cochlear afferent synapses and for presynaptic ribbon modiolar-pillar morphology.
    Rutherford MA; Bhattacharyya A; Xiao M; Cai HM; Pal I; Rubio ME
    Elife; 2023 Jan; 12():. PubMed ID: 36648432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity.
    Cao XJ; Oertel D
    J Neurophysiol; 2010 Nov; 104(5):2308-20. PubMed ID: 20739600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits.
    Wang YX; Wenthold RJ; Ottersen OP; Petralia RS
    J Neurosci; 1998 Feb; 18(3):1148-60. PubMed ID: 9437035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings.
    Kopp-Scheinpflug C; Dehmel S; Dörrscheidt GJ; Rübsamen R
    J Neurosci; 2002 Dec; 22(24):11004-18. PubMed ID: 12486196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of Activity-Dependent Plasticity at Auditory Nerve Synapses.
    Wong NF; Xu-Friedman MA
    J Neurosci; 2022 Aug; 42(32):6211-6220. PubMed ID: 35790402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse.
    González-Inchauspe C; Urbano FJ; Di Guilmi MN; Uchitel OD
    J Neurosci; 2017 Mar; 37(10):2589-2599. PubMed ID: 28159907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.