These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32051682)

  • 41. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction.
    Lee CK; Wang YM; Huang LS; Lin S
    Micron; 2007; 38(5):446-61. PubMed ID: 17015017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct measurement of single-molecule visco-elasticity in atomic force microscope force-extension experiments.
    Bippes CA; Humphris AD; Stark M; Müller DJ; Janovjak H
    Eur Biophys J; 2006 Feb; 35(3):287-92. PubMed ID: 16237549
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification.
    Cho H; Felts JR; Yu MF; Bergman LA; Vakakis AF; King WP
    Nanotechnology; 2013 Nov; 24(44):444007. PubMed ID: 24113150
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells.
    Pi J; Jin H; Jiang J; Yang F; Cai H; Yang P; Cai J; Chen ZW
    Pharmacol Res; 2017 May; 119():479-489. PubMed ID: 28411855
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High resolution atomic force and Kelvin probe force microscopy image data of InAs(001) surface using frequency modulation method.
    Park YM; Park JS; Chung CH; Lee S
    Data Brief; 2020 Apr; 29():105177. PubMed ID: 32055662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved lead-finding for kinase targets using high-throughput docking.
    McInnes C
    Curr Opin Drug Discov Devel; 2006 May; 9(3):339-47. PubMed ID: 16729730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative characterization of single-cell adhesion properties by atomic force microscopy using protein-functionalized microbeads.
    Chièze L; Le Cigne A; Meunier M; Berquand A; Dedieu S; Devy J; Molinari M
    J Mol Recognit; 2019 Mar; 32(3):e2767. PubMed ID: 30403313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New technologies in scanning probe microscopy for studying molecular interactions in cells.
    Lehenkari PP; Charras GT; Nesbitt SA; Horton MA
    Expert Rev Mol Med; 2000 Mar; 2(2):1-19. PubMed ID: 14585141
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy.
    Schaus SS; Henderson ER
    Biophys J; 1997 Sep; 73(3):1205-14. PubMed ID: 9284288
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells.
    Müller DJ; Krieg M; Alsteens D; Dufrêne YF
    Curr Opin Biotechnol; 2009 Feb; 20(1):4-13. PubMed ID: 19264474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular calipers for highly precise and accurate measurements of single-protein mechanics.
    Wang Y; Hu X; Bu T; Hu C; Hu X; Li H
    Langmuir; 2014 Mar; 30(10):2761-7. PubMed ID: 24555779
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Living cell study at the single-molecule and single-cell levels by atomic force microscopy.
    Shi X; Zhang X; Xia T; Fang X
    Nanomedicine (Lond); 2012 Oct; 7(10):1625-37. PubMed ID: 23148543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.
    Carvalho FA; Freitas T; Santos NC
    Adv Physiol Educ; 2015 Dec; 39(4):360-6. PubMed ID: 26628660
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanopore-Based Sensors for Ligand-Receptor Lead Optimization.
    Luan B; Huynh T; Zhou R
    J Phys Chem Lett; 2015 Feb; 6(3):331-7. PubMed ID: 26261942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
    Schulz F; Ritala J; Krejčí O; Seitsonen AP; Foster AS; Liljeroth P
    ACS Nano; 2018 Jun; 12(6):5274-5283. PubMed ID: 29800512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Imaging and Manipulation of Extracellular Traps by Atomic Force Microscopy.
    Pires RH; Delcea M; Felix SB
    Methods Mol Biol; 2019; 1886():203-217. PubMed ID: 30374869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A general and efficient cantilever functionalization technique for AFM molecular recognition studies.
    Bowers CM; Carlson DA; Shestopalov AA; Clark RL; Toone EJ
    Biopolymers; 2012 Oct; 97(10):761-5. PubMed ID: 22806495
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specific binding at the cellulose binding module-cellulose interface observed by force spectroscopy.
    King JR; Bowers CM; Toone EJ
    Langmuir; 2015 Mar; 31(11):3431-40. PubMed ID: 25738531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of adhesion mode atomic force microscopy resolves individual molecules in topography and adhesion.
    Willemsen OH; Snel MM; van Noort SJ; van der Werf KO; de Grooth BG; Figdor CG; Greve J
    Ultramicroscopy; 1999 Oct; 80(2):133-44. PubMed ID: 10526398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.