BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32051771)

  • 1. Molecular Mechanisms of Oxygen Activation and Hydrogen Peroxide Formation in Lytic Polysaccharide Monooxygenases.
    Wang B; Walton PH; Rovira C
    ACS Catal; 2019 Jun; 9(6):4958-4969. PubMed ID: 32051771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase.
    Caldararu O; Oksanen E; Ryde U; Hedegård ED
    Chem Sci; 2019 Jan; 10(2):576-586. PubMed ID: 30746099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners?
    Wang B; Zhang X; Fang W; Rovira C; Shaik S
    Acc Chem Res; 2022 Aug; 55(16):2280-2290. PubMed ID: 35926175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of the chitinolytic peroxygenase reaction.
    Bissaro B; Streit B; Isaksen I; Eijsink VGH; Beckham GT; DuBois JL; Røhr ÅK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1504-1513. PubMed ID: 31907317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry.
    Bissaro B; Eijsink VGH
    Essays Biochem; 2023 Mar; 67(3):575-584. PubMed ID: 36734231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the roles of the reductant and free copper ions in LPMO kinetics.
    Stepnov AA; Forsberg Z; Sørlie M; Nguyen GS; Wentzel A; Røhr ÅK; Eijsink VGH
    Biotechnol Biofuels; 2021 Jan; 14(1):28. PubMed ID: 33478537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced in situ H
    Stepnov AA; Eijsink VGH; Forsberg Z
    Sci Rep; 2022 Apr; 12(1):6129. PubMed ID: 35414104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering lytic polysaccharide monooxygenases (LPMOs).
    Forsberg Z; Stepnov AA; Nærdal GK; Klinkenberg G; Eijsink VGH
    Methods Enzymol; 2020; 644():1-34. PubMed ID: 32943141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Oxygen Binding Enhances Long-Range Electron Transfer: Lessons From Reduction of Lytic Polysaccharide Monooxygenases by Cellobiose Dehydrogenase.
    Wang Z; Feng S; Rovira C; Wang B
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2385-2392. PubMed ID: 33090629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases.
    Muraleedharan MN; Zouraris D; Karantonis A; Topakas E; Sandgren M; Rova U; Christakopoulos P; Karnaouri A
    Biotechnol Biofuels; 2018; 11():296. PubMed ID: 30386433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
    Kim S; Ståhlberg J; Sandgren M; Paton RS; Beckham GT
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):149-54. PubMed ID: 24344312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs).
    Eijsink VGH; Petrovic D; Forsberg Z; Mekasha S; Røhr ÅK; Várnai A; Bissaro B; Vaaje-Kolstad G
    Biotechnol Biofuels; 2019; 12():58. PubMed ID: 30923566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar oxidoreductases and LPMOs - two sides of the same polysaccharide degradation story?
    Manavalan T; Stepnov AA; Hegnar OA; Eijsink VGH
    Carbohydr Res; 2021 Jul; 505():108350. PubMed ID: 34049079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The H
    Filandr F; Man P; Halada P; Chang H; Ludwig R; Kracher D
    Biotechnol Biofuels; 2020; 13():37. PubMed ID: 32158501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Following the Fate of Lytic Polysaccharide Monooxygenases under Oxidative Conditions by NMR Spectroscopy.
    Christensen IA; Eijsink VGH; Stepnov AA; Courtade G; Aachmann FL
    Biochemistry; 2023 Jun; 62(12):1976-1993. PubMed ID: 37255464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitin-Active Lytic Polysaccharide Monooxygenases.
    Courtade G; Aachmann FL
    Adv Exp Med Biol; 2019; 1142():115-129. PubMed ID: 31102244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs).
    Kont R; Bissaro B; Eijsink VGH; Väljamäe P
    Nat Commun; 2020 Nov; 11(1):5786. PubMed ID: 33188177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of reductants on the catalytic efficiency of a lytic polysaccharide monooxygenase and the special role of dehydroascorbic acid.
    Stepnov AA; Christensen IA; Forsberg Z; Aachmann FL; Courtade G; Eijsink VGH
    FEBS Lett; 2022 Jan; 596(1):53-70. PubMed ID: 34845720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.