These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32051865)

  • 1. Upward continuation and polynomial trend analysis as a gravity data decomposition, case study at Ziway-Shala basin, central Main Ethiopian rift.
    Kebede H; Alemu A; Fisseha S
    Heliyon; 2020 Jan; 6(1):e03292. PubMed ID: 32051865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing and interpretation of full tensor gravity anomalies of Southern Main Ethiopian Rift.
    Kebede B; Mammo T
    Heliyon; 2021 Apr; 7(4):e06872. PubMed ID: 33997403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping geologic structures from Gravity and Digital Elevation Models in the Ziway-Shala Lakes basin; central Main Ethiopian rift.
    Kebede H; Alemu A; Nedaw D
    Heliyon; 2021 Dec; 7(12):e08604. PubMed ID: 34984244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth estimates of anomalous subsurface sources using 2D/3D modeling of potential field data: implications for groundwater dynamics in the Ziway-Shala Lakes Basin, Central Main Ethiopian Rift.
    Kebede H; Alemu A; Nedaw D; Fisseha S
    Heliyon; 2021 Apr; 7(4):e06843. PubMed ID: 33981897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constrained 3D gravity interface inversion for layer structures: implications for assessment of hydrocarbon sources in the Ziway-Shala Lakes basin, Central Main Ethiopian rift.
    Kebede H; Alemu A
    Heliyon; 2022 Jul; 8(7):e09980. PubMed ID: 35879998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural interpretation of Southern Main Ethiopian Rift basin using constrained full tensor gravity inversion of the basement morphology.
    Kebede B; Mammo T; Misgie A
    Heliyon; 2022 May; 8(5):e09525. PubMed ID: 35637672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated geophysical methods to constrain subsurface structures of Tulu Moye-Bora-Berecha axial volcanic complex, main Ethiopia rift: Implications for geothermal resources.
    Hilemichaeil S; Haile T; Yirgu G
    Heliyon; 2024 Apr; 10(7):e28499. PubMed ID: 38571634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural interpretation of Mae Suai Basin, Chiang Rai Province, based on gravity data analysis and modelling.
    Kanthiya S; Mangkhemthong N; Morley CK
    Heliyon; 2019 Feb; 5(2):e01232. PubMed ID: 30828662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial interpolation techniques comparison and evaluation: The case of ground-based gravity and elevation datasets of the central Main Ethiopian rift.
    Kebede H; Demissie Z; Tadesse H; Eshetu A
    Heliyon; 2024 Jun; 10(12):e32806. PubMed ID: 38975090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China).
    Zhao Q; Strykowski G; Li J; Pan X; Xu X
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28587086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delineating depth to bedrock beneath shallow unconfined aquifers: a gravity transect across the Palmer River Basin.
    Bohidar RN; Sullivan JP; Hermance JF
    Ground Water; 2001; 39(5):729-36. PubMed ID: 11554251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Gravity Compensation Method for High Precision Free-INS Based on "Extreme Learning Machine".
    Zhou X; Yang G; Cai Q; Wang J
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Australasian tektites from gravity and magnetic indicators.
    Karimi K; Kletetschka G; Mizera J; Meier V; Strunga V
    Sci Rep; 2023 Aug; 13(1):12868. PubMed ID: 37553513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsurface geology detection from application of the gravity-related dimensionality constraint.
    Karimi K; Kletetschka G
    Sci Rep; 2024 Jan; 14(1):2440. PubMed ID: 38286830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the spatial variability of subsurface resistivity by using vertical electrical sounding data and geostatistical analysis at Borena Area, Ethiopia.
    Abdulkadir YA; Fisseha S
    MethodsX; 2022; 9():101792. PubMed ID: 35990813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tectono-stratigraphic basin evolution in the Tehuacán-Mixteca highlands, south western México.
    Medina-Sánchez J; McLaren SJ; Ortega-Ramírez J; Valiente-Banuet A
    Heliyon; 2020 Mar; 6(3):e03584. PubMed ID: 32215328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Conrad and Curie point depth relationship with the variations in lithospheric structure, geothermal gradient and heat flow beneath the central main Ethiopian rift.
    Kassa M; Alemu A; Muluneh A
    Heliyon; 2022 Nov; 8(11):e11735. PubMed ID: 36439756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsurface absorption of anthropogenic warming of the land surface: the case of the world's largest brickworks (Stewartby, Bedfordshire, UK).
    Westaway R; Scotney PM; Younger PL; Boyce AJ
    Sci Total Environ; 2015 Mar; 508():585-603. PubMed ID: 25481718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of geophysically derived parameters in characterization of foundation integrity zones: An AHP approach.
    Bayode S; Akinlalu AA; Falade K; Oyanameh OE
    Heliyon; 2020 May; 6(5):e03981. PubMed ID: 32509981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.