These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32052331)

  • 21. Evaluation on the stabilization of Zn/Ni/Cu in spinel forms: Low-cost red mud as an effective precursor.
    Su M; Liao CZ; Ma S; Zhang K; Tang J; Liu C; Shih K
    Environ Pollut; 2019 Jun; 249():144-151. PubMed ID: 30884393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recovery of valuable metals from red mud: A comprehensive review.
    Pan X; Wu H; Lv Z; Yu H; Tu G
    Sci Total Environ; 2023 Dec; 904():166686. PubMed ID: 37659566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct degradation of Bisphenol A from aqueous solution by active red mud in aerobic environment.
    Chen Z; Qiu X; Ke J; Wen J; Wu C; Yu Q
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77063-77076. PubMed ID: 37249770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The utilization of red mud waste as industrial honeycomb catalyst for selective catalytic reduction of NO.
    Huangfu L; Abubakar A; Li C; Li Y; Wang C; Yu J; Gao S
    R Soc Open Sci; 2019 Nov; 6(11):191183. PubMed ID: 31827853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of red mud as an environmental remediation material: A review.
    Wang M; Liu X
    J Hazard Mater; 2021 Apr; 408():124420. PubMed ID: 33191032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hidden values in bauxite residue (red mud): recovery of metals.
    Liu Y; Naidu R
    Waste Manag; 2014 Dec; 34(12):2662-73. PubMed ID: 25269817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of antibiotics from aqueous solution by using magnetic Fe
    Aydin S; Aydin ME; Beduk F; Ulvi A
    Sci Total Environ; 2019 Jun; 670():539-546. PubMed ID: 30909031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and Applications of Red Mud, an Aluminum Industry Waste Material, in the Construction and Building Industries, as well as Catalysis.
    Al-Fakih A; Mohamed Nor Z; Inayath Basha S; Nasiruzzaman Shaikh M; Ahmad S; Al-Osta MA; Aziz MA
    Chem Rec; 2023 May; 23(5):e202300039. PubMed ID: 37078876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovery of aluminum oxide and iron oxide from aluminum electrolysis iron-rich cover material and preparation of aluminum fluoride.
    Lan J; Yan H; Liu Z; Ma W
    Environ Sci Pollut Res Int; 2024 Apr; 31(18):27388-27402. PubMed ID: 38512573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of sorption processes and FT-IR analysis of arsenate sorbed onto red muds (a bauxite ore processing waste).
    Castaldi P; Silvetti M; Enzo S; Melis P
    J Hazard Mater; 2010 Mar; 175(1-3):172-8. PubMed ID: 19853993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening.
    Hu Y; Li Q; Lee B; Jun YS
    Environ Sci Technol; 2014; 48(1):299-306. PubMed ID: 24289329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud.
    Yuan S; Liu X; Gao P; Han Y
    J Hazard Mater; 2020 Jul; 394():122579. PubMed ID: 32283382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovery of scandium from Canadian bauxite residue utilizing acid baking followed by water leaching.
    Anawati J; Azimi G
    Waste Manag; 2019 Jul; 95():549-559. PubMed ID: 31351641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of bauxite residue (red mud) as a low cost sorbent for sulfide removal in polluted water remediation.
    Sheng Y; Sun Q; Sun R; Burke IT; Mortimer RJ
    Water Sci Technol; 2016; 74(2):359-66. PubMed ID: 27438240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geochemical Characteristics and Toxic Elements in Alumina Refining Wastes and Leachates from Management Facilities.
    Sun C; Chen J; Tian K; Peng D; Liao X; Wu X
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30978989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An innovative route for valorising iron and aluminium oxide rich industrial wastes: Recovery of multiple metals.
    Khanna R; Konyukhov YV; Ikram-Ul-Haq M; Burmistrov I; Cayumil R; Belov VA; Rogachev SO; Leybo DV; Mukherjee PS
    J Environ Manage; 2021 Oct; 295():113035. PubMed ID: 34167061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of Iron Oxide Micro and Nanoparticles from Aluminum Industry Waste and Its Application in the Decolorization of Reactive Blue 235 Dye.
    Natarajan E; Ponnaiah GP
    Curr Pharm Biotechnol; 2016; 17(10):873-85. PubMed ID: 27033514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing arsenic sorption on red mud by phosphogypsum addition.
    Lopes G; Guilherme LR; Costa ET; Curi N; Penha HG
    J Hazard Mater; 2013 Nov; 262():1196-203. PubMed ID: 22795841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and Application of Polyaluminum Ferric Sulfate from Red Mud: Behaviors of Leaching, Polymerizing, and Coagulation.
    Li W; Zhang P; Zhu X
    ACS Omega; 2024 Jan; 9(2):2468-2479. PubMed ID: 38250350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of Cr (Ⅲ) from aqueous solution by using bauxite residue (red mud): Identification of active components and column tests.
    Qi X; Wang H; Zhang L; Xu B; Shi Q; Li F
    Chemosphere; 2020 Apr; 245():125560. PubMed ID: 31864065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.