These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32052331)
41. Alkaliphiles for comprehensive utilization of red mud (bauxite residue)-an alkaline waste from the alumina refinery. Naykodi A; Patankar SC; Thorat BN Environ Sci Pollut Res Int; 2023 Jan; 30(4):9350-9368. PubMed ID: 36480139 [TBL] [Abstract][Full Text] [Related]
42. Surface restructuring of red mud to produce FeO Pinto PS; Lanza GD; Souza MN; Ardisson JD; Lago RM Environ Sci Pollut Res Int; 2018 Mar; 25(7):6762-6771. PubMed ID: 29264851 [TBL] [Abstract][Full Text] [Related]
43. Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Carneiro J; Tobaldi DM; Capela MN; Novais RM; Seabra MP; Labrincha JA Waste Manag; 2018 Oct; 80():371-378. PubMed ID: 30455018 [TBL] [Abstract][Full Text] [Related]
44. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Wang S; Ang HM; Tadé MO Chemosphere; 2008 Aug; 72(11):1621-35. PubMed ID: 18558418 [TBL] [Abstract][Full Text] [Related]
45. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI). Costa RC; Moura FC; Oliveira PE; Magalhães F; Ardisson JD; Lago RM Chemosphere; 2010 Feb; 78(9):1116-20. PubMed ID: 20060564 [TBL] [Abstract][Full Text] [Related]
46. Research on red mud treatment by a circulating superconducting magnetic separator. Li Y; Chen H; Wang J; Xu F; Zhang W Environ Technol; 2014; 35(9-12):1243-9. PubMed ID: 24701921 [TBL] [Abstract][Full Text] [Related]
47. Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric-alum water treatment residues. Wang Y; Yu Y; Li H; Shen C J Environ Sci (China); 2016 Dec; 50():79-86. PubMed ID: 28034434 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics. Zhang N; Liu X; Sun H; Li L J Hazard Mater; 2011 Jan; 185(1):329-35. PubMed ID: 20932639 [TBL] [Abstract][Full Text] [Related]
49. Effects of thermal treatments on the characterisation and utilisation of red mud with sawdust additive. Liu Y; Naidu R; Ming H; Dharmarajan R; Du J Waste Manag Res; 2016 Jun; 34(6):518-26. PubMed ID: 26951343 [TBL] [Abstract][Full Text] [Related]
50. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations. Jacukowicz-Sobala I; Ociński D; Kociołek-Balawejder E Waste Manag Res; 2015 Jul; 33(7):612-29. PubMed ID: 26060197 [TBL] [Abstract][Full Text] [Related]
51. Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology. Rai S; Wasewar KL; Lataye DH; Mishra RS; Puttewar SP; Chaddha MJ; Mahindiran P; Mukhopadhyay J Waste Manag Res; 2012 Sep; 30(9):922-30. PubMed ID: 22751850 [TBL] [Abstract][Full Text] [Related]
52. Enhanced sequestration of CO Wang X; Qi J; Zhu H; Wang J; Zeng H; Li B; Yan S J Environ Manage; 2023 Nov; 346():118972. PubMed ID: 37716171 [TBL] [Abstract][Full Text] [Related]
53. Selective synthesis of zeolites A and X from two industrial wastes: Crushed stone powder and aluminum ash. Kuroki S; Hashishin T; Morikawa T; Yamashita K; Matsuda M J Environ Manage; 2019 Feb; 231():749-756. PubMed ID: 30408768 [TBL] [Abstract][Full Text] [Related]
54. Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO Lu Z; Qi X; Zhu X; Li X; Li K; Wang H Environ Pollut; 2021 Oct; 287():117484. PubMed ID: 34153609 [TBL] [Abstract][Full Text] [Related]
55. Radiological restrictions of using red mud as building material additive. Gu H; Wang N; Liu S Waste Manag Res; 2012 Sep; 30(9):961-5. PubMed ID: 22751852 [TBL] [Abstract][Full Text] [Related]
56. Summary of research progress on separation and extraction of valuable metals from Bayer red mud. Wang K; Dou Z; Liu Y; Li X; Lv G; Zhang TA Environ Sci Pollut Res Int; 2022 Dec; 29(60):89834-89852. PubMed ID: 36357761 [TBL] [Abstract][Full Text] [Related]
57. Activation of bisulfite by LaFeO Li Y; Meng X; Pang Y; Zhao C; Peng D; Wei Y; Xiang B R Soc Open Sci; 2022 Nov; 9(11):220466. PubMed ID: 36465670 [TBL] [Abstract][Full Text] [Related]
58. Kinetics and equilibrium adsorption study of selenium oxyanions onto Al/Si and Fe/Si coprecipitates. Chan YT; Liu YT; Tzou YM; Kuan WH; Chang RR; Wang MK Chemosphere; 2018 May; 198():59-67. PubMed ID: 29421761 [TBL] [Abstract][Full Text] [Related]
59. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review. Rai S; Wasewar KL; Agnihotri A Waste Manag Res; 2017 Jun; 35(6):563-580. PubMed ID: 28566030 [TBL] [Abstract][Full Text] [Related]
60. Reductive roasting of arsenic-contaminated red mud for Fe resources recovery driven by johnbaumite-based arsenic thermostabilization strategy. Yang D; Shi M; Zhang J; Sasaki A; Endo M J Hazard Mater; 2023 Jun; 452():131255. PubMed ID: 36989791 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]