These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32052350)

  • 1. Standard state free energies, not pK
    Gunner MR; Murakami T; Rustenburg AS; Işık M; Chodera JD
    J Comput Aided Mol Des; 2020 May; 34(5):561-573. PubMed ID: 32052350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pK
    Işık M; Levorse D; Rustenburg AS; Ndukwe IE; Wang H; Wang X; Reibarkh M; Martin GE; Makarov AA; Mobley DL; Rhodes T; Chodera JD
    J Comput Aided Mol Des; 2018 Oct; 32(10):1117-1138. PubMed ID: 30406372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of the SAMPL6 pK
    Işık M; Rustenburg AS; Rizzi A; Gunner MR; Mobley DL; Chodera JD
    J Comput Aided Mol Des; 2021 Feb; 35(2):131-166. PubMed ID: 33394238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAMPL6: calculation of macroscopic pK
    Selwa E; Kenney IM; Beckstein O; Iorga BI
    J Comput Aided Mol Des; 2018 Oct; 32(10):1203-1216. PubMed ID: 30084080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing Protein Protonation Microstates Using Monte Carlo Sampling.
    Khaniya U; Mao J; Wei RJ; Gunner MR
    J Phys Chem B; 2022 Apr; 126(13):2476-2485. PubMed ID: 35344367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent pKa values in proteins--a theoretical analysis of protonation energies with practical consequences for enzymatic reactions.
    Bombarda E; Ullmann GM
    J Phys Chem B; 2010 Feb; 114(5):1994-2003. PubMed ID: 20088566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.
    Kim MO; Blachly PG; McCammon JA
    PLoS Comput Biol; 2015 Oct; 11(10):e1004341. PubMed ID: 26506513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton affinity changes driving unidirectional proton transport in the bacteriorhodopsin photocycle.
    Onufriev A; Smondyrev A; Bashford D
    J Mol Biol; 2003 Oct; 332(5):1183-93. PubMed ID: 14499620
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Fossat MJ; Pappu RV
    J Phys Chem B; 2019 Aug; 123(32):6952-6967. PubMed ID: 31362509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States.
    de Oliveira C; Yu HS; Chen W; Abel R; Wang L
    J Chem Theory Comput; 2019 Jan; 15(1):424-435. PubMed ID: 30537823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Dependent Protonation of the Phl p 6 Pollen Allergen Studied by NMR and cpH-aMD.
    Hofer F; Dietrich V; Kamenik AS; Tollinger M; Liedl KR
    J Chem Theory Comput; 2019 Oct; 15(10):5716-5726. PubMed ID: 31476118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues.
    Huang Q; Herrmann A
    Protein Cell; 2012 Mar; 3(3):230-8. PubMed ID: 22467263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the protonation state of drug molecules: the case of aztreonam.
    Díaz N; Sordo TL; Suárez D; Méndez R; Villacorta JM; Simón L; Rico M; Jiménez MA
    J Med Chem; 2006 Jun; 49(11):3235-43. PubMed ID: 16722641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of pH-dependent binding free energies.
    Kim MO; McCammon JA
    Biopolymers; 2016 Jan; 105(1):43-9. PubMed ID: 26202905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment molecular orbital investigation of the role of AMP protonation in firefly luciferase pH-sensitivity.
    Milne BF; Marques MA; Nogueira F
    Phys Chem Chem Phys; 2010 Nov; 12(42):14285-93. PubMed ID: 20886161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying charge state heterogeneity for proteins with multiple ionizable residues.
    Fossat MJ; Posey AE; Pappu RV
    Biophys J; 2021 Dec; 120(24):5438-5453. PubMed ID: 34826385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linkage between proton binding and folding in RNA: a thermodynamic framework and its experimental application for investigating pKa shifting.
    Moody EM; Lecomte JT; Bevilacqua PC
    RNA; 2005 Feb; 11(2):157-72. PubMed ID: 15659356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD; Sommer MS; Karplus M
    J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes.
    Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Med Chem; 2003 Oct; 46(21):4487-500. PubMed ID: 14521411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.