These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 32052525)

  • 1. Demographic fluctuations lead to rapid and cyclic shifts in genetic structure among populations of an alpine butterfly, Parnassius smintheus.
    Jangjoo M; Matter SF; Roland J; Keyghobadi N
    J Evol Biol; 2020 May; 33(5):668-681. PubMed ID: 32052525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network.
    Jangjoo M; Matter SF; Roland J; Keyghobadi N
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10914-9. PubMed ID: 27621433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity.
    Keyghobadi N; Roland J; Strobeck C
    Mol Ecol; 2005 Jun; 14(7):1897-909. PubMed ID: 15910314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape structure and the genetic effects of a population collapse.
    Caplins SA; Gilbert KJ; Ciotir C; Roland J; Matter SF; Keyghobadi N
    Proc Biol Sci; 2014 Dec; 281(1796):20141798. PubMed ID: 25320176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of landscape on the population genetic structure of the alpine butterfly parnassius smintheus (Papilionidae).
    Keyghobadi N; Roland J; Strobeck C
    Mol Ecol; 1999 Sep; 8(9):1481-95. PubMed ID: 10564454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A range-wide genetic bottleneck overwhelms contemporary landscape factors and local abundance in shaping genetic patterns of an alpine butterfly (Lepidoptera: Pieridae: Colias behrii).
    Schoville SD; Lam AW; Roderick GK
    Mol Ecol; 2012 Sep; 21(17):4242-56. PubMed ID: 22849440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpine biogeography of Parnassian butterflies during Quaternary climate cycles in North America.
    Schoville SD; Roderick GK
    Mol Ecol; 2009 Aug; 18(16):3471-85. PubMed ID: 19659481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremes of snow and temperature affect patterns of genetic diversity and differentiation in the alpine butterfly Parnassius smintheus.
    Lucas M; Rašić G; Filazzola A; Matter S; Roland J; Keyghobadi N
    Mol Ecol; 2024 Sep; 33(18):e17503. PubMed ID: 39162219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus.
    Harper GL; Maclean N; Goulson D
    Mol Ecol; 2003 Dec; 12(12):3349-57. PubMed ID: 14629351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Historic cycles of fragmentation and expansion in Parnassius smintheus (papilionidae) inferred using mitochondrial DNA.
    DeChaine EG; Martini AP
    Evolution; 2004 Jan; 58(1):113-27. PubMed ID: 15058724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encroaching forests decouple alpine butterfly population dynamics.
    Roland J; Matter SF
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13702-4. PubMed ID: 17699630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic time-series data show that gene flow maintains high genetic diversity despite substantial genetic drift in a butterfly species.
    Gompert Z; Springer A; Brady M; Chaturvedi S; Lucas LK
    Mol Ecol; 2021 Oct; 30(20):4991-5008. PubMed ID: 34379852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations.
    Shama LN; Kubow KB; Jokela J; Robinson CT
    BMC Evol Biol; 2011 Sep; 11():278. PubMed ID: 21951631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration.
    Keyghobadi N; Roland J; Matter SF; Strobeck C
    Proc Biol Sci; 2005 Mar; 272(1562):553-60. PubMed ID: 15799951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strong genetic footprint of the re-introduction history of Alpine ibex (Capra ibex ibex).
    Biebach I; Keller LF
    Mol Ecol; 2009 Dec; 18(24):5046-58. PubMed ID: 19912536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure.
    Orsini L; Corander J; Alasentie A; Hanski I
    Mol Ecol; 2008 Jun; 17(11):2629-42. PubMed ID: 18466229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Differentiation of Alpine Butterfly
    Tao R; Xu C; Wang Y; Sun X; Li C; Ma J; Hao J; Yang Q
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32053967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pleistocene origin and population history of a neoendemic alpine butterfly.
    Schoville SD; Stuckey M; Roderick GK
    Mol Ecol; 2011 Mar; 20(6):1233-47. PubMed ID: 21244539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demographic inferences and climatic niche modelling shed light on the evolutionary history of the emblematic cold-adapted Apollo butterfly at regional scale.
    Kebaïli C; Sherpa S; Rioux D; Després L
    Mol Ecol; 2022 Jan; 31(2):448-466. PubMed ID: 34687582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic variation and structure of house sparrow populations: is there an island effect?
    Jensen H; Moe R; Hagen IJ; Holand AM; Kekkonen J; Tufto J; Saether BE
    Mol Ecol; 2013 Apr; 22(7):1792-805. PubMed ID: 23379682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.