These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32052589)

  • 1. Modelling the action potential propagation in a heart with structural heterogeneities: From high-resolution MRI to numerical simulations.
    Davidović A; Coudière Y; Bourgault Y
    Int J Numer Method Biomed Eng; 2021 Nov; 37(11):e3322. PubMed ID: 32052589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac propagation simulation.
    Pollard AE; Hooke N; Henriquez CS
    Crit Rev Biomed Eng; 1992; 20(3-4):171-210. PubMed ID: 1478091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology.
    Bruce D; Pathmanathan P; Whiteley JP
    Bull Math Biol; 2014 Feb; 76(2):431-54. PubMed ID: 24338526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue.
    Steinberg BE; Glass L; Shrier A; Bub G
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1299-311. PubMed ID: 16608709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and visualization of the activation wavefront propagation to improve understanding the QRS complex changes indicating left ventricular hypertrophy.
    Svehlikova J; Zelinka J; Bacharova L; Tysler M
    J Electrocardiol; 2016; 49(5):755-62. PubMed ID: 27241185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive multiscale model for simulating cardiac conduction.
    Hand PE; Griffith BE
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14603-8. PubMed ID: 20671202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Which bidomain conductivity is the most important for modelling heart and torso surface potentials during ischaemia?
    Johnston BM; Johnston PR
    Comput Biol Med; 2021 Oct; 137():104830. PubMed ID: 34534792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical effects of diffusive cell coupling on cardiac excitation and propagation: a simulation study.
    Qu Z
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2803-12. PubMed ID: 15271669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation dynamics in anisotropic cardiac tissue via decoupling.
    Clements JC; Nenonen J; Li PK; Horácek BM
    Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of electrical conduction in cardiac tissue including fibroblasts.
    Sachse FB; Moreno AP; Seemann G; Abildskov JA
    Ann Biomed Eng; 2009 May; 37(5):874-89. PubMed ID: 19283480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representing cardiac bidomain bath-loading effects by an augmented monodomain approach: application to complex ventricular models.
    Bishop MJ; Plank G
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1066-75. PubMed ID: 21292591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of conduction velocity by nonmyocytes in the low coupling regime.
    Jacquemet V; Henriquez CS
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):893-6. PubMed ID: 19389687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches for determining cardiac bidomain conductivity values: progress and challenges.
    Johnston BM; Johnston PR
    Med Biol Eng Comput; 2020 Dec; 58(12):2919-2935. PubMed ID: 33089458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of propagation along a cylindrical bundle of cardiac tissue--I: Mathematical formulation.
    Henriquez CS; Plonsey R
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):850-60. PubMed ID: 2227972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level.
    Stinstra J; MacLeod R; Henriquez C
    Ann Biomed Eng; 2010 Apr; 38(4):1399-414. PubMed ID: 20049638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model.
    Barbosa CR
    Phys Med Biol; 2003 Dec; 48(24):4151-64. PubMed ID: 14727758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue.
    Boccia E; Luther S; Parlitz U
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mind the Gap: A Semicontinuum Model for Discrete Electrical Propagation in Cardiac Tissue.
    Costa CM; Silva PA; dos Santos RW
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):765-74. PubMed ID: 26292333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.