These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32052865)

  • 21. Prey Lysate Enhances Growth and Toxin Production in an Isolate of
    Gao H; Tong M; An X; Smith JL
    Toxins (Basel); 2019 Jan; 11(1):. PubMed ID: 30669577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harmful effects of Dinophysis to the ciliate Mesodinium rubrum: Implications for prey capture.
    Mafra LL; Nagai S; Uchida H; Tavares CP; Escobar BP; Suzuki T
    Harmful Algae; 2016 Nov; 59():82-90. PubMed ID: 28073509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters.
    Yoo YD; Seong KA; Jeong HJ; Yih W; Rho JR; Nam SW; Kim HS
    Harmful Algae; 2017 Sep; 68():105-117. PubMed ID: 28962973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of Sequestered Cryptophyte Nuclei in
    Kim M; Drumm K; Daugbjerg N; Hansen PJ
    Front Microbiol; 2017; 8():423. PubMed ID: 28377747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of ciliate strain, size, and nutritional content on the growth and toxicity of mixotrophic Dinophysis acuminata.
    Smith JL; Tong M; Kulis D; Anderson DM
    Harmful Algae; 2018 Sep; 78():95-105. PubMed ID: 30196930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavioral and mechanistic characteristics of the predator-prey interaction between the dinoflagellate Dinophysis acuminata and the ciliate Mesodinium rubrum.
    Jiang H; Kulis DM; Brosnahan ML; Anderson DM
    Harmful Algae; 2018 Jul; 77():43-54. PubMed ID: 30005801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth, Toxin Content and Production of Dinophysis Norvegica in Cultured Strains Isolated from Funka Bay (Japan).
    Nagai S; Basti L; Uchida H; Kuribayashi T; Natsuike M; Sildever S; Nakayama N; Lum WM; Matsushima R
    Toxins (Basel); 2023 May; 15(5):. PubMed ID: 37235353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Plastid Genome of the Cryptomonad Teleaulax amphioxeia.
    Kim JI; Yoon HS; Yi G; Kim HS; Yih W; Shin W
    PLoS One; 2015; 10(6):e0129284. PubMed ID: 26047475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia.
    Janson S
    Environ Microbiol; 2004 Oct; 6(10):1102-6. PubMed ID: 15344936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DINOPHYSIS CAUDATA (DINOPHYCEAE) SEQUESTERS AND RETAINS PLASTIDS FROM THE MIXOTROPHIC CILIATE PREY MESODINIUM RUBRUM(1).
    Kim M; Nam SW; Shin W; Coats DW; Park MG
    J Phycol; 2012 Jun; 48(3):569-79. PubMed ID: 27011072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryptophyte farming by symbiotic ciliate host detected in situ.
    Qiu D; Huang L; Lin S
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12208-12213. PubMed ID: 27791006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PHOTOACCLIMATION IN THE PHOTOTROPHIC MARINE CILIATE MESODINIUM RUBRUM (CILIOPHORA)(1).
    Moeller HV; Johnson MD; Falkowski PG
    J Phycol; 2011 Apr; 47(2):324-32. PubMed ID: 27021864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis.
    Garric S; Ratin M; Marie D; Foulon V; Probert I; Rodriguez F; Six C
    Curr Biol; 2024 Jul; 34(14):3064-3076.e5. PubMed ID: 38936366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Genetic Diversity of
    Johnson MD; Beaudoin DJ; Laza-Martinez A; Dyhrman ST; Fensin E; Lin S; Merculief A; Nagai S; Pompeu M; Setälä O; Stoecker DK
    Front Microbiol; 2016; 7():2017. PubMed ID: 28066344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of turbulence in Dinophysis spp. growth, feeding, and toxin leakage in culture.
    Strohm VR; Ayache N; Millette NC; Menegay A; Gobler CJ; Campbell L; Smith JL
    Harmful Algae; 2024 Aug; 137():102666. PubMed ID: 39003026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of dissolved nitrate and phosphate in isolates of
    Tong M; Smith JL; Kulis DM; Anderson DM
    Aquat Microb Ecol; 2015; 75(2):169-185. PubMed ID: 27721571
    [No Abstract]   [Full Text] [Related]  

  • 37. Prey type constrains growth and photosynthetic capacity of the kleptoplastidic ciliate Mesodinium chamaeleon (Ciliophora).
    Moeller HV; Hsu V; Lepori-Bui M; Mesrop LY; Chinn C; Johnson MD
    J Phycol; 2021 Jun; 57(3):916-930. PubMed ID: 33454988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo transcriptome assembly and gene annotation for the toxic dinoflagellate Dinophysis.
    Gaonkar CC; Campbell L
    Sci Data; 2023 Jun; 10(1):345. PubMed ID: 37268695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of a mucus trap by Dinophysis acuta for the capture of Mesodinium rubrum prey under culture conditions.
    Giménez Papiol G; Beuzenberg V; Selwood AI; MacKenzie L; Packer MA
    Harmful Algae; 2016 Sep; 58():1-7. PubMed ID: 28073453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preferential Plastid Retention by the Acquired Phototroph Mesodinium chamaeleon.
    Moeller HV; Johnson MD
    J Eukaryot Microbiol; 2018 Mar; 65(2):148-158. PubMed ID: 28710891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.