These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32052964)

  • 1. Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.
    Gelfand I; Hamilton SK; Kravchenko AN; Jackson RD; Thelen KD; Robertson GP
    Environ Sci Technol; 2020 Mar; 54(5):2961-2974. PubMed ID: 32052964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production.
    Gaunt JL; Lehmann J
    Environ Sci Technol; 2008 Jun; 42(11):4152-8. PubMed ID: 18589980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can bioenergy carbon capture and storage aggravate global water crisis?
    Hu B; Zhang Y; Li Y; Teng Y; Yue W
    Sci Total Environ; 2020 Apr; 714():136856. PubMed ID: 32018988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can biomass supply meet the demands of bioenergy with carbon capture and storage (BECCS)?
    Jones MB; Albanito F
    Glob Chang Biol; 2020 Oct; 26(10):5358-5364. PubMed ID: 32726492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.
    Schmer MR; Vogel KP; Varvel GE; Follett RF; Mitchell RB; Jin VL
    PLoS One; 2014; 9(3):e89501. PubMed ID: 24594783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H; Wang MQ
    Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technoeconomic Analysis of Negative Emissions Bioenergy with Carbon Capture and Storage through Pyrolysis and Bioenergy District Heating Infrastructure.
    Lim TC; Cuellar A; Langseth K; Waldon JL
    Environ Sci Technol; 2022 Feb; 56(3):1875-1884. PubMed ID: 35015535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.
    Femeena PV; Sudheer KP; Cibin R; Chaubey I
    J Environ Manage; 2018 Apr; 212():198-209. PubMed ID: 29432999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable bioenergy production from marginal lands in the US Midwest.
    Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP
    Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil pore characteristics and the fate of new switchgrass-derived carbon in switchgrass and prairie bioenergy cropping systems.
    Kim K; Juyal A; Kravchenko A
    Sci Rep; 2024 Apr; 14(1):7824. PubMed ID: 38570696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels.
    Field JL; Richard TL; Smithwick EAH; Cai H; Laser MS; LeBauer DS; Long SP; Paustian K; Qin Z; Sheehan JJ; Smith P; Wang MQ; Lynd LR
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21968-21977. PubMed ID: 32839342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction to "Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS".
    Gelfand I; Hamilton SK; Kravchenko AN; Jackson RD; Thelen KD; Robertson GP
    Environ Sci Technol; 2023 Jan; 57(1):862. PubMed ID: 36521035
    [No Abstract]   [Full Text] [Related]  

  • 16. Simulated Biomass Sorghum GHG Reduction Potential is Similar to Maize.
    Kent J; Hartman MD; Lee DK; Hudiburg T
    Environ Sci Technol; 2020 Oct; 54(19):12456-12466. PubMed ID: 32856896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of drought and heat stress on long-term carbon fluxes of bioenergy crops grown in the Midwestern USA.
    Joo E; Hussain MZ; Zeri M; Masters MD; Miller JN; Gomez-Casanovas N; DeLucia EH; Bernacchi CJ
    Plant Cell Environ; 2016 Sep; 39(9):1928-40. PubMed ID: 27043723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global implications of crop-based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity.
    Hanssen SV; Steinmann ZJN; Daioglou V; Čengić M; Van Vuuren DP; Huijbregts MAJ
    Glob Change Biol Bioenergy; 2022 Mar; 14(3):307-321. PubMed ID: 35875590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States.
    Baik E; Sanchez DL; Turner PA; Mach KJ; Field CB; Benson SM
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3290-3295. PubMed ID: 29531081
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.