These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32053045)

  • 1. Modified electromyography-assisted optimization approach for predicting lumbar spine loading while walking with backpack loads.
    Li SS; Chow DH
    Proc Inst Mech Eng H; 2020 May; 234(5):527-533. PubMed ID: 32053045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Predictions Between an EMG-Assisted Approach and Two Optimization-Driven Approaches for Lumbar Spine Loading During Walking With Backpack Loads.
    Li SSW; Chow DHK
    Hum Factors; 2020 Jun; 62(4):565-577. PubMed ID: 31189071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMG-based lumbosacral joint compression force prediction using a support vector machine.
    Li SSW; Chu CCF; Chow DHK
    Med Eng Phys; 2019 Dec; 74():115-120. PubMed ID: 31537499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of backpack load on critical changes of trunk muscle activation and lumbar spine loading during walking.
    Li SSW; Chow DHK
    Ergonomics; 2018 Apr; 61(4):553-565. PubMed ID: 28791922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation.
    Ezquerro F; Simón A; Prado M; Pérez A
    Med Eng Phys; 2004 Jan; 26(1):11-22. PubMed ID: 14644594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of lumbosacral joint compression force profile when walking caused by backpack loads.
    Li SSW; Zheng YP; Chow DHK
    Hum Mov Sci; 2019 Aug; 66():164-172. PubMed ID: 31029838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low back three-dimensional joint forces, kinematics, and kinetics during walking.
    Callaghan JP; Patla AE; McGill SM
    Clin Biomech (Bristol, Avon); 1999 Mar; 14(3):203-16. PubMed ID: 10619108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions.
    Granata KP; Marras WS
    J Biomech; 1993 Dec; 26(12):1429-38. PubMed ID: 8308047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative ability of EMG, optimization, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting.
    Gagnon D; Larivière C; Loisel P
    Clin Biomech (Bristol, Avon); 2001 Jun; 16(5):359-72. PubMed ID: 11390042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to study lumbar spine response to axial compression during magnetic resonance imaging: technical note.
    Wisleder D; Werner SL; Kraemer WJ; Fleck SJ; Zatsiorsky VM
    Spine (Phila Pa 1976); 2001 Sep; 26(18):E416-20. PubMed ID: 11547212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of varying backpack loads on peak forces in the lumbosacral spine during walking.
    Goh JH; Thambyah A; Bose K
    Clin Biomech (Bristol, Avon); 1998; 13(1 Suppl 1):S26-S31. PubMed ID: 11430787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal loads and trunk muscles forces during level walking - A combined in vivo and in silico study on six subjects.
    Arshad R; Angelini L; Zander T; Di Puccio F; El-Rich M; Schmidt H
    J Biomech; 2018 Mar; 70():113-123. PubMed ID: 28947161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of lumbar spine and muscle loading between male and female workers during box transfers.
    Gagnon D; Plamondon A; Larivière C
    J Biomech; 2018 Nov; 81():76-85. PubMed ID: 30286979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrective sitting strategies: An examination of muscle activity and spine loading.
    Castanharo R; Duarte M; McGill S
    J Electromyogr Kinesiol; 2014 Feb; 24(1):114-9. PubMed ID: 24295543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine.
    Gagnon D; Plamondon A; Larivière C
    J Biomech; 2016 Sep; 49(13):2938-2945. PubMed ID: 27469898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical model to determine lumbosacral loads during single stance phase in normal gait.
    Khoo BC; Goh JC; Bose K
    Med Eng Phys; 1995 Jan; 17(1):27-35. PubMed ID: 7704340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loading of the lumbar spine during backpack carriage.
    Wettenschwiler PD; Lorenzetti S; Ferguson SJ; Stämpfli R; Aiyangar AK; Rossi RM; Annaheim S
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):558-565. PubMed ID: 27873535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovering from Laboratory-Induced slips and trips causes high levels of lumbar muscle activity and spine loading.
    Rashedi E; Kathawala K; Abdollahi M; Alemi MM; Mokhlespour Esfahani MI; Nussbaum MA
    J Electromyogr Kinesiol; 2023 Feb; 68():102743. PubMed ID: 36638696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical evaluation of exoskeleton use on loading of the lumbar spine.
    Weston EB; Alizadeh M; Knapik GG; Wang X; Marras WS
    Appl Ergon; 2018 Apr; 68():101-108. PubMed ID: 29409622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations of handheld loads increase the range of motion of the lumbar spine without compromising local dynamic stability during walking.
    Gsell KY; Beaudette SM; Capcap IM; Brown SHM
    Gait Posture; 2018 Oct; 66():101-106. PubMed ID: 30172215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.