BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32053059)

  • 1. Droplet Digital PCR Technology for Detection of
    Del Pilar Martínez-Diz M; Andrés-Sodupe M; Berbegal M; Bujanda R; Díaz-Losada E; Gramaje D
    Plant Dis; 2020 Apr; 104(4):1144-1150. PubMed ID: 32053059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of
    Maldonado-González MM; Del Pilar Martínez-Diz M; Andrés-Sodupe M; Bujanda R; Díaz-Losada E; Gramaje D
    Plant Dis; 2020 Aug; 104(8):2269-2274. PubMed ID: 32568630
    [No Abstract]   [Full Text] [Related]  

  • 3. Grapevine Trunk Diseases in British Columbia: Incidence and Characterization of the Fungal Pathogens Associated with Black Foot Disease of Grapevine.
    Úrbez-Torres JR; Haag P; Bowen P; O'Gorman DT
    Plant Dis; 2014 Apr; 98(4):456-468. PubMed ID: 30708694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of Agrobacterium vitis from Grapevine Nursery Stock and Vineyard Soil using Droplet Digital PCR.
    Voegel TM; Nelson LM
    Plant Dis; 2018 Nov; 102(11):2136-2141. PubMed ID: 30198827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines.
    Cabral A; Rego C; Nascimento T; Oliveira H; Groenewald JZ; Crous PW
    Fungal Biol; 2012 Jan; 116(1):62-80. PubMed ID: 22208602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards.
    Berlanas C; Berbegal M; Elena G; Laidani M; Cibriain JF; Sagües A; Gramaje D
    Front Microbiol; 2019; 10():1142. PubMed ID: 31178845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and Diversity of Black-Foot Disease Fungi in Symptomless Grapevine Nursery Stock in Spain.
    Berlanas C; Ojeda S; López-Manzanares B; Andrés-Sodupe M; Bujanda R; Del Pilar Martínez-Diz M; Díaz-Losada E; Gramaje D
    Plant Dis; 2020 Jan; 104(1):94-104. PubMed ID: 31738690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenicity of Nectriaceous Fungi on Avocado in Australia.
    Parkinson LE; Shivas RG; Dann EK
    Phytopathology; 2017 Dec; 107(12):1479-1485. PubMed ID: 28723243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Health Status of Ready-to-Plant Grapevine Nursery Material in Canada Regarding Young Vine Decline Fungi.
    Hrycan J; Theilmann J; Mahovlic A; Boulé J; Úrbez-Torres JR
    Plant Dis; 2023 Dec; 107(12):3708-3717. PubMed ID: 37436216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficacy of 8-hydroxyquinoline derivatives in controlling the fungus Ilyonectria liriodendri, the causative agent of black foot disease in grapevines.
    de Souza LM; de Chaves MA; Joaquim AR; Gionbelli MP; Gava A; Fiorentin J; Ficagna E; Almança MAK; Teixeira ML; Andrade SF; Fuentefria AM
    J Appl Microbiol; 2021 Sep; 131(3):1440-1451. PubMed ID: 33565222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Novel Real-Time Quantitative PCR Method for Detection of
    Jiang Y; Jin H; Li X; Yan D; Zhang Y; Li M; Gao J; Lu B; Chen C; Jiang Y
    Plant Dis; 2023 Jun; 107(6):1680-1689. PubMed ID: 36471458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First Report of Cylindrocarpon liriodendri Causing Black Foot Disease of Grapevine in California.
    Petit E; Gubler WD
    Plant Dis; 2007 Aug; 91(8):1060. PubMed ID: 30780468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of
    Wen R; Lee J; Chu M; Tonu N; Dumonceaux T; Gossen BD; Yu F; Peng G
    Plant Dis; 2020 Apr; 104(4):1188-1194. PubMed ID: 32065569
    [No Abstract]   [Full Text] [Related]  

  • 14. Investigation of Trichoderma species colonization of nursery grapevines for improved management of black foot disease.
    van Jaarsveld WJ; Halleen F; Bester MC; Pierron RJ; Stempien E; Mostert L
    Pest Manag Sci; 2021 Jan; 77(1):397-405. PubMed ID: 32741056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multiplex PCR System for the Specific Detection of Cylindrocarpon liriodendri, C. macrodidymum, and C. pauciseptatum from Grapevine.
    Alaniz S; Armengol J; García-Jiménez J; Abad-Campos P; León M
    Plant Dis; 2009 Aug; 93(8):821-825. PubMed ID: 30764326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field.
    Shang Q; Yang G; Wang Y; Wu X; Zhao X; Hao H; Li Y; Xie Z; Zhang Y; Wang R
    World J Microbiol Biotechnol; 2016 Jun; 32(6):95. PubMed ID: 27116961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of white mustard cover crop residue, soil chemical fumigation and Trichoderma spp. root treatment on black-foot disease control in grapevine.
    Berlanas C; Andrés-Sodupe M; López-Manzanares B; Maldonado-González MM; Gramaje D
    Pest Manag Sci; 2018 Dec; 74(12):2864-2873. PubMed ID: 29781195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples.
    Rački N; Dreo T; Gutierrez-Aguirre I; Blejec A; Ravnikar M
    Plant Methods; 2014; 10(1):42. PubMed ID: 25628753
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Abeywickrama PD; Zhang W; Li X; Jayawardena RS; Hyde KD; Yan J
    Pathogens; 2021 Nov; 10(12):. PubMed ID: 34959510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Application of a Real-Time Reverse-Transcription PCR and Droplet Digital PCR Assays for the Direct Detection of
    Pandey B; Mallik I; Gudmestad NC
    Phytopathology; 2020 Jan; 110(1):58-67. PubMed ID: 31448996
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.