These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32053156)

  • 1. BionoiNet: ligand-binding site classification with off-the-shelf deep neural network.
    Shi W; Lemoine JM; Shawky AA; Singha M; Pu L; Yang S; Ramanujam J; Brylinski M
    Bioinformatics; 2020 May; 36(10):3077-3083. PubMed ID: 32053156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications.
    Feinstein J; Shi W; Ramanujam J; Brylinski M
    Methods Mol Biol; 2021; 2266():299-312. PubMed ID: 33759134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network.
    Pu L; Govindaraj RG; Lemoine JM; Wu HC; Brylinski M
    PLoS Comput Biol; 2019 Feb; 15(2):e1006718. PubMed ID: 30716081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LigVoxel: inpainting binding pockets using 3D-convolutional neural networks.
    Skalic M; Varela-Rial A; Jiménez J; Martínez-Rosell G; De Fabritiis G
    Bioinformatics; 2019 Jan; 35(2):243-250. PubMed ID: 29982392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OctSurf: Efficient hierarchical voxel-based molecular surface representation for protein-ligand affinity prediction.
    Liu Q; Wang PS; Zhu C; Gaines BB; Zhu T; Bi J; Song M
    J Mol Graph Model; 2021 Jun; 105():107865. PubMed ID: 33640787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving detection of protein-ligand binding sites with 3D segmentation.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Sci Rep; 2020 Mar; 10(1):5035. PubMed ID: 32193447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein docking model evaluation by 3D deep convolutional neural networks.
    Wang X; Terashi G; Christoffer CW; Zhu M; Kihara D
    Bioinformatics; 2020 Apr; 36(7):2113-2118. PubMed ID: 31746961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GraphSite: Ligand Binding Site Classification with Deep Graph Learning.
    Shi W; Singha M; Pu L; Srivastava G; Ramanujam J; Brylinski M
    Biomolecules; 2022 Jul; 12(8):. PubMed ID: 36008947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepDTA: deep drug-target binding affinity prediction.
    Öztürk H; Özgür A; Ozkirimli E
    Bioinformatics; 2018 Sep; 34(17):i821-i829. PubMed ID: 30423097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.
    Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE
    J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BindWeb: A web server for ligand binding residue and pocket prediction from protein structures.
    Xia Y; Xia C; Pan X; Shen HB
    Protein Sci; 2022 Dec; 31(12):e4462. PubMed ID: 36190332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation.
    Zhang H; Saravanan KM; Lin J; Liao L; Ng JT; Zhou J; Wei Y
    PeerJ; 2020; 8():e8864. PubMed ID: 32292649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions.
    Torng W; Altman RB
    J Chem Inf Model; 2019 Oct; 59(10):4131-4149. PubMed ID: 31580672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein model quality assessment using 3D oriented convolutional neural networks.
    Pagès G; Charmettant B; Grudinin S
    Bioinformatics; 2019 Sep; 35(18):3313-3319. PubMed ID: 30874723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Convolutional Neural Networks Initialized from Pretrained 2D Convolutional Neural Networks for Classification of Industrial Parts.
    Merino I; Azpiazu J; Remazeilles A; Sierra B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning transferable deep convolutional neural networks for the classification of bacterial virulence factors.
    Zheng D; Pang G; Liu B; Chen L; Yang J
    Bioinformatics; 2020 Jun; 36(12):3693-3702. PubMed ID: 32251507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.