These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude. Fulco CS; Muza SR; Beidleman BA; Demes R; Staab JE; Jones JE; Cymerman A Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R428-36. PubMed ID: 21123763 [TBL] [Abstract][Full Text] [Related]
5. Physiology and pathophysiology with ascent to altitude. Palmer BF Am J Med Sci; 2010 Jul; 340(1):69-77. PubMed ID: 20442648 [TBL] [Abstract][Full Text] [Related]
6. A Four-Way Comparison of Cardiac Function with Normobaric Normoxia, Normobaric Hypoxia, Hypobaric Hypoxia and Genuine High Altitude. Boos CJ; O'Hara JP; Mellor A; Hodkinson PD; Tsakirides C; Reeve N; Gallagher L; Green ND; Woods DR PLoS One; 2016; 11(4):e0152868. PubMed ID: 27100313 [TBL] [Abstract][Full Text] [Related]
7. Hypobaric hypoxia deteriorates bone mass and strength in mice. Brent MB; Emmanuel T; Simonsen U; Brüel A; Thomsen JS Bone; 2022 Jan; 154():116203. PubMed ID: 34536630 [TBL] [Abstract][Full Text] [Related]
8. Effect of aircraft-cabin altitude on passenger discomfort. Muhm JM; Rock PB; McMullin DL; Jones SP; Lu IL; Eilers KD; Space DR; McMullen A N Engl J Med; 2007 Jul; 357(1):18-27. PubMed ID: 17611205 [TBL] [Abstract][Full Text] [Related]
9. Physiology in Medicine: A physiologic approach to prevention and treatment of acute high-altitude illnesses. Luks AM J Appl Physiol (1985); 2015 Mar; 118(5):509-19. PubMed ID: 25539941 [TBL] [Abstract][Full Text] [Related]
10. Differences in cardio-ventilatory responses to hypobaric and normobaric hypoxia: a review. Richard NA; Koehle MS Aviat Space Environ Med; 2012 Jul; 83(7):677-84. PubMed ID: 22779311 [TBL] [Abstract][Full Text] [Related]
11. Critique of the equivalent air altitude model. Conkin J; Wessel JH Aviat Space Environ Med; 2008 Oct; 79(10):975-82. PubMed ID: 18856188 [TBL] [Abstract][Full Text] [Related]
12. Evidence for cerebral edema, cerebral perfusion, and intracranial pressure elevations in acute mountain sickness. DiPasquale DM; Muza SR; Gunn AM; Li Z; Zhang Q; Harris NS; Strangman GE Brain Behav; 2016 Mar; 6(3):e00437. PubMed ID: 27099800 [TBL] [Abstract][Full Text] [Related]
13. The antioxidative effect of a novel free radical scavenger 4'-hydroxyl-2-substituted phenylnitronyl nitroxide in acute high-altitude hypoxia mice. Fan PC; Ma HP; Jing LL; Li L; Jia ZP Biol Pharm Bull; 2013; 36(6):917-24. PubMed ID: 23486089 [TBL] [Abstract][Full Text] [Related]
14. The Effects of Sex on Cardiopulmonary Responses to Acute Normobaric Hypoxia. Boos CJ; Mellor A; O'Hara JP; Tsakirides C; Woods DR High Alt Med Biol; 2016 Jun; 17(2):108-15. PubMed ID: 27008376 [TBL] [Abstract][Full Text] [Related]
15. Counterpoint: Hypobaric hypoxia does not induce different responses from normobaric hypoxia. Mounier R; Brugniaux JV J Appl Physiol (1985); 2012 May; 112(10):1784-6. PubMed ID: 22589489 [No Abstract] [Full Text] [Related]
16. Changes in cardiac autonomic activity during a passive 8 hour acute exposure to 5 500 m normobaric hypoxia are not related to the development of acute mountain sickness. Wille M; Mairer K; Gatterer H; Philippe M; Faulhaber M; Burtscher M Int J Sports Med; 2012 Mar; 33(3):186-91. PubMed ID: 22290324 [TBL] [Abstract][Full Text] [Related]