BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 32053247)

  • 21. Molecular Catalyst Synthesis Strategies to Prepare Atomically Dispersed Fe-N-C Heterogeneous Catalysts.
    Bates JS; Khamespanah F; Cullen DA; Al-Omari AA; Hopkins MN; Martinez JJ; Root TW; Stahl SS
    J Am Chem Soc; 2022 Oct; 144(41):18797-18802. PubMed ID: 36215721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-Step Preparation of Fe/N/C Single-Atom Catalysts Containing Fe-N
    Matsumoto K; Kato M; Yagi I; Xie S; Asakura K; Noro SI; Tohnai N; Campidelli S; Hayashi T; Onoda A
    Chemistry; 2022 Jan; 28(5):e202103545. PubMed ID: 34850463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts.
    Yang H; Shang L; Zhang Q; Shi R; Waterhouse GIN; Gu L; Zhang T
    Nat Commun; 2019 Oct; 10(1):4585. PubMed ID: 31594928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrathin atomic Mn-decorated formamide-converted N-doped carbon for efficient oxygen reduction reaction.
    Xiong X; Li Y; Jia Y; Meng Y; Sun K; Zheng L; Zhang G; Li Y; Sun X
    Nanoscale; 2019 Aug; 11(34):15900-15906. PubMed ID: 31414104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation.
    Wang J; Chen S; Quan X; Yu H
    Chemosphere; 2018 Jan; 190():135-143. PubMed ID: 28987402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomically Dispersed Fe-N
    Wei M; Cai A; Bin Li ; He H; Wu S; Zhang G; Zhang F; Peng W; Fan X; Li Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36007-36018. PubMed ID: 35895975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cobalt nanoparticles supported on N-doped mesoporous carbon as a highly efficient catalyst for the synthesis of aromatic amines.
    Cui X; Liang K; Tian M; Zhu Y; Ma J; Dong Z
    J Colloid Interface Sci; 2017 Sep; 501():231-240. PubMed ID: 28456107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters.
    Ao X; Zhang W; Li Z; Li JG; Soule L; Huang X; Chiang WH; Chen HM; Wang C; Liu M; Zeng XC
    ACS Nano; 2019 Oct; 13(10):11853-11862. PubMed ID: 31461618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational Synthesis of Iron/Nitrogen-Doped Carbon Catalyst through a Spatial Isolation Strategy for Efficient Oxygen Reduction in Acidic and Alkaline Media.
    Feng B; Wu X; Li L; Gao W; Hu W; Li CM
    Chemistry; 2019 Sep; 25(49):11560-11565. PubMed ID: 31297891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of mesoporous chitosan iron supported nano-catalyst for the catalyzed oxidation of primary amine to imine.
    Wu L; Liu Y; Li Z; Liang J; Geng L; Chen L; Dong Z
    RSC Adv; 2023 Oct; 13(43):30243-30251. PubMed ID: 37849706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C
    An S; Zhang G; Wang T; Zhang W; Li K; Song C; Miller JT; Miao S; Wang J; Guo X
    ACS Nano; 2018 Sep; 12(9):9441-9450. PubMed ID: 30183258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities.
    Zhang T; Walsh AG; Yu J; Zhang P
    Chem Soc Rev; 2021 Jan; 50(1):569-588. PubMed ID: 33170202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct wall number control of carbon nanotube forests from engineered iron catalysts.
    Chiang WH; Futaba DN; Yumura M; Hata K
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2745-51. PubMed ID: 23763154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon Nanotubes Modified by Venturello Complex as Highly Efficient Catalysts for Alkene and Thioethers Oxidation With Hydrogen Peroxide.
    Evtushok VY; Ivanchikova ID; Podyacheva OY; Stonkus OA; Suboch AN; Chesalov YA; Zalomaeva OV; Kholdeeva OA
    Front Chem; 2019; 7():858. PubMed ID: 31921779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile and Scalable Synthesis of Metal- and Nitrogen-Doped Carbon Nanotubes for Efficient Electrochemical CO
    Gang Y; Pellessier J; Du Z; Fang S; Fang L; Pan F; Suarez M; Hambleton K; Chen F; Zhou HC; Li T; Hu YH; Li Y
    ACS Sustain Chem Eng; 2023 May; 11(18):7231-7243. PubMed ID: 38344242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid.
    Li X; Surkus AE; Rabeah J; Anwar M; Dastigir S; Junge H; Brückner A; Beller M
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):15849-15854. PubMed ID: 32458555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.
    Morris RH
    Acc Chem Res; 2015 May; 48(5):1494-502. PubMed ID: 25897779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosting Fenton-Like Reactions via Single Atom Fe Catalysis.
    Yin Y; Shi L; Li W; Li X; Wu H; Ao Z; Tian W; Liu S; Wang S; Sun H
    Environ Sci Technol; 2019 Oct; 53(19):11391-11400. PubMed ID: 31436973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.